skip to main content

Search for: All records

Creators/Authors contains: "Beyerlein, Irene J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of short-range ordering (SRO) on dislocation glide in the MoNbTi and TaNbTi RMPEAs using a multi-scale modeling approach. Monte carlo/molecular dynamics simulations with a moment tensor potential show that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFEs). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs and stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress.
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available February 1, 2024
  3. Free, publicly-accessible full text available January 27, 2024
  4. Free, publicly-accessible full text available February 1, 2024
  5. Abstract Understanding and controlling the development of deformation twins is paramount for engineering strong and stable hexagonal close-packed (HCP) Mg alloys. Actual twins are often irregular in boundary morphology and twin crystallography, deviating from the classical picture commonly used in theory and simulation. In this work, the elastic strains and stresses around irregular twins are examined both experimentally and computationally to gain insight into how twins develop and the microstructural features that influence their development. A nanoprecession electron diffraction (N-PED) technique is used to measure the elastic strains within and around a $$\left\{ {10\overline{1}2} \right\}$$ 10 1 ¯ 2 tensile twin in AZ31B Mg alloy with nm scale resolution. A full-field elasto-viscoplastic fast Fourier transform (EVP-FFT) crystal plasticity model of the same sub-grain and irregular twin structure is employed to understand and interpret the measured elastic strain fields. The calculations predict spatially resolved elastic strain fields in good agreement with the measurement, as well as all the stress components and the dislocation density fields generated by the twin, which are not easily obtainable from the experiment. The model calculations find that neighboring twins, several twin thicknesses apart, have little influence on the twin-tip micromechanical fields. Furthermore, this work reveals thatmore »irregularity in the twin-tip shape has a negligible effect on the development of the elastic strains around and inside the twin. Importantly, the major contributor to these micromechanical fields is the alignment of the twinning shear direction with the twin boundary.« less
    Free, publicly-accessible full text available March 1, 2024
  6. Hexagonal close-packed (HCP) magnesium alloys are widely used in automotive and aerospace industries due to their low density and high specific-strength. Their applicability is mainly restricted due to poor formability and pronounced plastic anisotropy. The formability is usually improved by altering the chemistry (adding rare-earth elements like Y) or modulating the microstructure (e.g., grain refinement). However, grain refinement alone cannot yield the desired ductility, and the scarcity of rare-earth elements also limits the extent to which the alloying strategy can be used. To overcome these issues, in this work, it is proposed that the formability of Mg alloys can be improved by combining the grain refinement and alloying approaches. To quantitively explore this possibility, a crystal-plasticity-based constitutive model, which is sensitive to both alloying concentration and grain sizes, is developed. To demonstrate, the model is applied to study the combined effect of Y content and grain size on the mechanical responses of Mg alloy. The calculations are used to build maps of plastic anisotropy measures, such as tension–compression asymmetry ratio and Lankford coefficients, for a wide range of Y content and grain sizes. From these maps, the grain size that would yield the desired performance of Mg alloy for amore »fixed Y content can be identified. This work provides an accelerated pathway to optimize both the microstructure and chemistry simultaneously to achieve formability and to reduce the dependence on alloying.« less
    Free, publicly-accessible full text available January 1, 2024
  7. Free, publicly-accessible full text available January 1, 2024
  8. Free, publicly-accessible full text available January 1, 2024
  9. Free, publicly-accessible full text available January 1, 2024
  10. Free, publicly-accessible full text available January 1, 2024