skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhalekar, Snehal_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sulfur‐tuned advanced carbons (STACs) with high mass loadings of sulfur are synthesized using an environmentally benign and scalable steam‐assisted sulfur insertion (SASI) method. While steam provides the pressure necessary to promote deep and rapid sulfur insertion into a carbon porous structure, a strong affinity between melted sulfur and carbon excludes water from pore penetration. The resulting STACs exhibit sulfur mass loadings up to 85% and the electrical conductivity of the carbon framework is largely preserved. The sulfur penetration can be tuned to fill specific pore sizes, enabling pore‐size‐dependent allocation of sulfur and controllable porosity, while sulfur lines the carbon pore surfaces. A significant amount of sulfur is in the monoclinic γ phase. To demonstrate their energy and environmental applications, the STACs are used as cathode materials in rechargeable aluminum‐sulfur batteries and as adsorption materials for spilled oil removal. 
    more » « less