The requirements of augmented signal contrast provided by nanoparticle tags in biosensor microscopy-based point-of-care technologies for cancer and infectious disease diagnostics can be addressed through metallo-dielectric nanoarchitectures that enhance optical scattering and absorption to provide digital resolution detection of single tags with simple instrumentation. Photonic Resonator Interferometric Scattering Microscopy (PRISM) enables label-free visualization of nanometer-scale analytes such as extracellular vesicles and virions, and its applicability can be extended to biomolecular analyte counting through nanoparticle tags. Here, we present template-free, linker-less cryosoret nano-assemblies fabricated via adiabatic cooling (−196 °C) as plasmonic nano-antennas that provide high scattering contrast in PRISM. Plasmonic Ag and Au nanomaterials and their cryosorets are evaluated through imaging experiments and simulations based on the finite element method to understand the photo-plasmonic coupling effect at the surface of a photonic crystal (PC) interface. The Ag and Au cryosorets provide at most 8.29-fold and 6.77-fold higher signal contrast compared to their singlet counterpart. Through the simulations, the averaged field magnitude enhancements of 2.77-fold and 3.68-fold are observed for Ag and Au cryosorets when interfacing with PCs compared to bare glass substrates. The hybrid coupling between the localized Mie and delocalized Bragg plasmons of cryosorets and the underlying PC's guided mode resonance provides insights for developing nano-assembly-based nano-tags for biosensing applications.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bhaskar, Seemesh (2)
-
Cunningham, Brian T (2)
-
Liu, Leyang (1)
-
Liu, Weinan (1)
-
Tibbs, Joseph (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 3, 2025
-
Bhaskar, Seemesh ; Liu, Weinan ; Tibbs, Joseph ; Cunningham, Brian T ( , Applied Physics Letters)
Diagnostic assays utilizing fluorescent reporters in the context of low abundance biomarkers for cancer and infectious disease can reach lower limits of detection through efficient collection of emitted photons into an optical sensor. In this work, we present the rational design, fabrication, and application of one-dimensional photonic crystal (PC) grating interfaces to accomplish a cost-effective prism-free, metal-free, and objective-free platform for augmentation of fluorescence emission collection efficiency. Guided mode resonance (GMR) of the PC is engineered to match the laser excitation (532 nm) and emission maximum (580 nm) of the radiating dipoles to arrive at optimized conditions. The photo-plasmonic hybrid nano-engineering using silver nanoparticles presented >110-fold steering fluorescence enhancement enabling placement of the sample between the excitation source and detector that are in a straight line. From the experimental and simulation inferences, we propose a radiating GMR model by scrutinizing the polarized emission properties of the hybrid substrate, in accordance with the radiating plasmon model. The augmented fluorescence intensity realized here with a simple detection instrument provides sub-nanomolar sensitivity to provide a path toward point-of-care scenarios.
Free, publicly-accessible full text available April 15, 2025