skip to main content

Search for: All records

Creators/Authors contains: "Bhatia, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2022
  2. With few exceptions, most research in automated assessment of depression has considered only the patient’s behavior to the exclusion of the therapist’s behavior. We investigated the interpersonal coordination (synchrony) of head movement during patient-therapist clinical interviews. Participants with major depressive disorder were recorded in clinical interviews (Hamilton Rating Scale for Depression, HRSD) at 7-week intervals over a period of 21 weeks. For each session, patient and therapist 3D head movement was tracked from 2D videos. Head angles in the horizontal (pitch) and vertical (yaw) axes were used to measure head movement. Interpersonal coordination of head movement between patients and therapistsmore »was measured using windowed cross-correlation. Patterns of coordination in head movement were investigated using the peak picking algorithm. Changes in head movement coordination over the course of treatment were measured using a hierarchical linear model (HLM). The results indicated a strong effect for patient-therapist head movement synchrony. Within-dyad variability in head movement coordination was higher than between-dyad variability, meaning that differences over time in a dyad were higher as compared to the differences between dyads. Head movement synchrony did not change over the course of treatment. To the best of our knowledge, this study is the first attempt to analyze the mutual influence of patient-therapist head movement in relation to depression severity.« less
  3. Abstract Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October–19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times ofmore »one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.« less
    Free, publicly-accessible full text available December 1, 2022