- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Becker, Aaron T. (2)
-
Bhatnagar, Shriya (2)
-
Burbage, Mary (1)
-
Fekete, Sandor P. (1)
-
Garcia, Javier (1)
-
Krupke, Dominik (1)
-
Nguyen, An (1)
-
Soto, Steban (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper investigates motion planning for one or more robot(s) that attempt to harvest agents from a moving swarm. Generating motion paths that maximize the number of agents harvested differs from many traditional coverage problems because the agents move. This movement allows previously cleared areas to become recontaminated. We assume that the swarm agents prefer certain regions over others, and that we can represent the swarm by a Markov Process that encodes the agents' preferred regions and their speed of motion. We exploit this model to design and simulate robotic coverage paths that maximize the number of agents harvested by a fleet of robots in a given time budget.more » « less
-
Nguyen, An; Krupke, Dominik; Burbage, Mary; Bhatnagar, Shriya; Fekete, Sandor P.; Becker, Aaron T. (, 2018 IEEE International Conference on Robotics and Automation (ICRA))This paper introduces techniques for mosquito population surveys in the field using electrified screens (bug zappers) mounted to a UAV. Instrumentation on the UAV logs the UAV path and the GPS location, altitude, and time of each mosquito elimination. Hardware experiments with a UAV equipped with an electrified screen provide real-time measurements of (former) mosquito locations and mosquito-free volumes. Planning a trajectory for the UAV that maximizes the number of mosquito kills is related to the Traveling Salesman Problem, the Lawn Mower Problem and, most closely, Milling with Turn Cost. We reduce this problem to considering variants of covering a grid graph with minimum turn cost, corresponding to optimized energy consumption. We describe an exact method based on Integer Programming that is able to compute provably optimal instances with over 1,500 pixels. These solutions are then implemented on the UAV.more » « less
An official website of the United States government
