skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhattacharya, Somdatta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The application of solid-state (SS) nanopore devices to single-molecule nucleic acid sequencing has been challenging. Thus, the early successes in applying SS nanopore devices to the more difficult class of biopolymer, glycosaminoglycans (GAGs), have been surprising, motivating us to examine the potential use of an SS nanopore to analyze synthetic heparan sulfate GAG chains of controlled composition and sequence prepared through a promising, recently developed chemoenzymatic route. A minimal representation of the nanopore data, using only signal magnitude and duration, revealed, by eye and image recognition algorithms, clear differences between the signals generated by four synthetic GAGs. By subsequent machine learning, it was possible to determine disaccharide and even monosaccharide composition of these four synthetic GAGs using as few as 500 events, corresponding to a zeptomole of sample. These data suggest that ultrasensitive GAG analysis may be possible using SS nanopore detection and well-characterized molecular training sets. 
    more » « less