skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhattarai, Susma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bacteria capable of dehalogenation via reductive or hydrolytic pathways are ubiquitous. Little is known, however, about the prevalence of bacterial dechlorination in deep terrestrial environments with a limited carbon supply. In this study we analyzed published genomes from three deep terrestrial subsurface sites: a deep aquifer in Western Siberia, the Sanford Underground Research Facility in South Dakota, USA, and the Soudan Underground Iron Mine (SUIM) in Minnesota, USA to determine if there was evidence to suggest that microbial dehalogenation was possible in these environments. Diverse dehalogenase genes were present in all analyzed metagenomes, with reductive dehalogenase and haloalkane dehalogenase genes the most common. Taxonomic analysis of both hydrolytic and reductive dehalogenase genes was performed to explore their affiliation; this analysis indicated that at the SUIM site, hydrolytic dehalogenase genes were taxonomically affiliated with Marinobacter species. Because of this affiliation, experiments were also performed with Marinobacter subterrani strain JG233 (‘JG233’), an organism containing three predicted hydrolytic dehalogenase genes and isolated from the SUIM site, to determine whether hydrolytic dehalogenation was an active process and involved in growth on a chlorocarboxylic acid. Presence of these genes in genome appears to be functional, as JG233 was capable of chloroacetate dechlorination with simultaneous chloride release. Stable isotope experiments combined with confocal Raman microspectroscopy demonstrated that JG233 incorporated carbon from 13C-chloroacetate into its biomass. These experiments suggest that organisms present in these extreme and often low-carbon environments are capable of reductive and hydrolytic dechlorination and, based on laboratory experiments, may use this capability as a competitive advantage by utilizing chlorinated organic compounds for growth, either directly or after dechlorination. 
    more » « less