skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Bhimani, Janki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Existing tiered memory systems all use DRAM-Preferred as their al- location policy whereby pages get allocated from higher-performing DRAM until it is filled after which all future allocations are made from lower-performing persistent memory (PM). The novel insight of this work is that the right page allocation policy for a workload can help to lower the access latencies for the newly allocated pages. We design, implement, and evaluate three page allocation policies within the real system deployment of the state-of-the-art dynamic tiering system. We observe that the right page allocation policy can improve the performance of a tiered memory system by as much as 17x for certain workloads. 
    more » « less
    Free, publicly-accessible full text available June 12, 2024
  2. We argue that wear leveling in SSDs does more harm than good under modern settings where the endurance limit is in the hundreds. To support this claim, we evaluate existing wear leveling techniques and show that they exhibit anomalous behaviors and produce a high write amplification. These findings are consistent with a recent large-scale field study on the operational characteristics of SSDs. We discuss the option of forgoing wear leveling and instead adopting capacity variance in SSDs, and show that the capacity variance extends the lifetime of the SSD by up to 2.94×. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)