- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bhounsule, P. A. (2)
-
Alaeddini, A. (1)
-
Farra, S. (1)
-
Kim, M. (1)
-
Krause, J. (1)
-
Pusey, J. (1)
-
Zamani, A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The popular approach of assuming a control policy and then finding the largest region of attraction (ROA) (e.g., sum-of-squares optimization) may lead to conservative estimates of the ROA, especially for highly nonlinear systems. We present a sampling-based approach that starts by assuming a ROA and then fi nds the necessary control policy by performing trajectory optimization on sampled initial conditions. Our method works with black-box models, produces a relatively large ROA, and ensures exponential convergence of the initial conditions to the periodic motion. We demonstrate the approach on a model of hopping and include extensive verification and robustness checks.more » « less
-
Bhounsule, P. A.; Zamani, A.; Krause, J.; Farra, S.; Pusey, J. (, ASME-International Design Engineering & Technical Conference, Virtual Conference, Aug 17--19, 2020.)Legged robots with point or small feet are nearly impossible to control instantaneously but are controllable over the time scale of one or more steps, also known as step-to-step control. Previous approaches achieve step-to-step control using optimization by (1) using the exact model obtained by integrating the equations of motion, or (2) using a linear approximation of the step-to-step dynamics. The former provides a large region of stability at the expense of a high computational cost while the latter is computationally cheap but offers limited region of stability. Our method combines the advantages of both. First, we generate input/output data by simulating a single step. Second, the input/output data is curve fitted using a regression model to get a closed-form approximation of the step-to-step dynamics. We do this model identification offline. Next, we use the regression model for online optimal control. Here, using the spring-load inverted pendulum model of hopping, we show that both parametric (polynomial and neural network) and non-parametric (gaussian process regression) approximations can adequately model the step-to-step dynamics. We then show this approach can stabilize a wide range of initial conditions fast enough to enable real-time control. Our results suggest that closed-form approximation of the step-to-step dynamics provides a simple accurate model for fast optimal control of legged robots.more » « less