skip to main content

Search for: All records

Creators/Authors contains: "Bibby, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. Fecal indicator bacteria currently used for water quality monitoring inadequately represent viral fate in water systems, motivating the development of viral fecal pollution indicators. Molecular viral fecal pollution indicators such as crAssphage and pepper mild mottle virus (PMMoV) have emerged as leading viral fecal pollution indicator candidates due to ease and speed of measurement and target specificity. Elucidating the fate of molecular viral fecal indicators in water systems is necessary to facilitate their development, broader adoption, and ultimately their association with infectious risk. A significant mechanism controlling the behavior of viral indicators in environmental waters is association with particles, as this would dictate removal via settling and transport characteristics. In this study, we investigated the particle associations of six molecular fecal pollution targets (crAssphage, PMMoV, adenovirus, human polyomavirus, norovirus, HF183/BacR287) in wastewater using a cascade filtration approach. Four different filters were employed representing large settleable particles (180 μm), larger (20 μm) and smaller suspended particles (0.45 μm), and non-settleable particles (0.03 μm). All molecular targets were detected on all particle size fractions; however, all targets had their highest concentrations on the 0.45 μm (percent contribution ranging from 40% to 80.5%) and 20 μm (percent contribution ranging from 3.9% to 39.4%) filters. The association of viral fecal pollution targets with suspended particles suggests that particle association will dictate transport in environmental waters and that sample concentration approaches based upon particle collection will be effective for these targets. 
    more » « less
  4. Abstract

    A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the “COVIDPoops19” global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.

    more » « less
  5. Abstract Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest in using wastewater monitoring as an approach for disease surveillance. A significant uncertainty that would improve the interpretation of wastewater monitoring data is the intensity and timing with which individuals shed RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data sets from a university campus during a period of heightened surveillance, we inferred that individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty interval (UI): 6–7; 95% UI: 4–8) following infection, and that wastewater measurements are highly overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32–0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as an early warning of rising transmission in areas where transmission is low or clinical testing is delayed or of limited capacity. 
    more » « less
  6. Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA has demonstrated useful correlation with both coronavirus disease 2019 (COVID-19) cases and clinical testing positivity at the community level. Wastewater surveillance on college campuses has also demonstrated promising predictive capacity for the presence and absence of COVID-19 cases. However, to date, such monitoring has most frequently relied upon composite samplers and reverse transcription quantitative PCR (RT-qPCR) techniques, which limits the accessibility and scalability of wastewater surveillance, particularly in low-resource settings. In this study, we trialed the use of tampons as passive swabs for sample collection and reverse transcription loop-mediated isothermal amplification (RT-LAMP), which does not require sophisticated thermal cycling equipment, to detect SARS-CoV-2 RNA in wastewater. Results for the workflow were available within three hours of sample collection. The RT-LAMP assay is approximately 20 times less analytically sensitive than RT-droplet digital PCR. Nonetheless, during a building-level wastewater surveillance campaign concurrent with independent weekly clinical testing of all students, the method demonstrated a three-day positive predictive value (PPV) of 75% (excluding convalescent cases) and same-day negative predictive value (NPV) of 80% for incident COVID-19 cases. These predictive values are comparable to that reported by wastewater monitoring using RT-qPCR. These observations suggest that even with lower analytical sensitivity the tampon swab and RT-LAMP workflow offers a cost-effective and rapid approach that could be leveraged for scalable building-level wastewater surveillance for COVID-19 potentially even in low-resource settings. 
    more » « less