skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bibek, Gautam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Deposition temperature is an important parameter to control in pulsed laser deposition of thin films, as it affects the ad-atom mobility and diffusion in regards to film growth. Increased growth temperature can also result in increased stacking fault densities in YBa2Cu3O7- (YBCO) films. This research investigates the influence of deposition temperature on the critical current density, critical temperature, and the microstructure of YBCO thin films double doped with BaHfO3 and Y2O3. A KrF excimer laser was used to produce thin films of YBCO doped with 4 vol.% BaHfO3 and 3 vol. % Y2O3 on LaAlO3 (LAO) substrates at various deposition temperatures from 790 - 825. The growth temperature influence on the flux pinning landscape and Jc (H,T,) properties (T = 5 - 77K, H = 0 - 9T, = 0 -180) of these films will be presented. 
    more » « less