skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biddle, Louise_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Advances in uncrewed surface vehicles enable expanded observations in the critically undersampled Southern Ocean—a region vital for global heat uptake. Using data from three Saildrone missions that sampled the Pacific sector of the Southern Ocean in both summer and winter, we evaluate processes and spatiotemporal scales of decorrelation that drive sensible heat fluxes. Enhanced heat flux variability is primarily linked to synoptic‐scale southwesterly winds, with decorrelation scales of 50 km and 10 hr, consistent across seasons. These scales are influenced by both atmospheric forcing and oceanic variability, with sharp sea surface temperature changes occasionally driving pronounced shifts in sensible heat flux. Our results extend the observed relationship between wind direction and heat loss across the entire Pacific sector of the Southern Ocean, previously limited to three locations. Our data sets reveal over 8,000 temperature fronts ranging from <1 km to >20 km in width. These fine‐scale ocean processes contribute to the heat flux variability 35% of the time. While wind‐related variability dominates sensible heat flux changes across the smallest fronts, the ocean's role becomes increasingly significant with wider ocean fronts, particularly those over 4 km in width. However, due to their larger abundance, the total change of sensible heat flux over smaller (1 km) fronts is an order of magnitude greater than larger fronts (>4 km). These results highlight the role of fine‐scale atmosphere‐ocean interactions relating to heat flux variability in the Southern Ocean, offering valuable insights for enhancing flux estimates in this critical region. 
    more » « less