skip to main content

Search for: All records

Creators/Authors contains: "Bigham, Nicholas P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ischemia-reperfusion injury (IRI), which describes the cell damage and death that occurs after blood and oxygen are restored to ischemic or hypoxic tissue, is a significant factor within the mortality rates of heart disease and stroke patients. At the cellular level, the return of oxygen triggers an increase in reactive oxygen species (ROS) and mitochondrial calcium (mCa2+) overload, which both contribute to cell death. Despite the widespread occurrence of IRI in different pathological conditions, there are currently no clinically approved therapeutic agents for its management. In this Perspective, we will briefly discuss the current therapeutic options for IRI and then describe in great detail the potential role and arising applications of metal-containing coordination and organometallic complexes for treating this condition. This Perspective categorizes these metal compounds based on their mechanisms of action, which include their use as delivery agents for gasotransmitters, inhibitors of mCa2+ uptake, and catalysts for the decomposition of ROS. Lastly, the challenges and opportunities for inorganic chemistry approaches to manage IRI are discussed. 
    more » « less
  2. Abstract

    The mitochondrial calcium uniporter (MCU) mediates uptake of calcium ions (Ca2+) into the mitochondria, a process that is vital for maintaining normal cellular function. Inhibitors of the MCU, the most promising of which are dinuclear ruthenium coordination compounds, have found use as both therapeutic agents and tools for studying the importance of this ion channel. In this study, six Co3+cage compounds with sarcophagine‐like ligands were assessed for their abilities to inhibit MCU‐mediated mitochondrial Ca2+uptake. These complexes were synthesized and characterized according to literature procedures and then investigated in cellular systems for their MCU‐inhibitory activities. Among these six compounds, [Co(sen)]3+(3, sen=5‐(4‐amino‐2‐azabutyl)‐5‐methyl‐3,7‐diaza‐1,9‐nonanediamine) was identified to be a potent MCU inhibitor, with IC50values of inhibition of 160 and 180 nM in permeabilized HeLa and HEK293T cells, respectively. Furthermore, the cellular uptake of compound3was determined, revealing moderate accumulation in cells. Most notably,3was demonstrated to operate in intact cells as an MCU inhibitor. Collectively, this work presents the viability of using cobalt coordination complexes as MCU inhibitors, providing a new direction for researchers to investigate.

    more » « less
  3. We have investigated the biological properties of the osmium analogue of a potent ruthenium-based mitochondrial calcium uniporter inhibitor and have found it to possess distinct properties.

    more » « less