- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Biham, Ofer (1)
-
Katzav, Eytan (1)
-
Krapf, Diego (1)
-
Lev-Ari, Dor (1)
-
Tishby, Ido (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present analytical results for the distribution of first return (FR) times of non-backtracking random walks (NBWs) on undirected configuration model networks consisting of $$N$$ nodes with degree distribution $P(k)$. We focus on the case in which the network consists of a single connected component. Starting from a random initial node $$i$$ at time $t=0$, an NBW hops into a random neighbor of $$i$$ at time $t=1$ and at each subsequent step it continues to hop into a random neighbor of its current node, excluding the previous node. We calculate the tail distribution $$P ( T_{\rm FR} > t )$$ of first return times from a random initial node to itself. It is found that $$P ( T_{\rm FR} > t )$$ is given by a discrete Laplace transform of the degree distribution $P(k)$. This result exemplifies the relation between structural properties of a network, captured by the degree distribution, and properties of dynamical processes taking place on the network. Using the tail-sum formula, we calculate the mean first return time $${\mathbb E}[ T_{\rm FR} ]$$. Surprisingly, $${\mathbb E}[ T_{\rm FR} ]$$ coincides with the result obtained from Kac's lemma that applies to simple random walks (RWs). We also calculate the variance $${\rm Var}(T_{\rm FR})$$, which accounts for the variability of first return times between different NBW trajectories. We apply this formalism to Erd{\H o}s-R\'enyi networks, random regular graphs and configuration model networks with exponential and power-law degree distributions and obtain closed-form expressions for $$P( T_{\rm FR} > t )$$ as well as its mean and variance. These results provide useful insight on the advantages of NBWs over simple RWs in network exploration, sampling and search processes.more » « less
An official website of the United States government
