Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Printable and wearable plant sensors offer an approach for collecting critical environmental data at high spatial resolution to understand plant conditions and aid land management practices. Here, screen printed capacitive devices that can measure relative humidity (RH) directly at the plant‐environment interface, are demonstrated in an ultra‐thin (<6 µm) form factor. Using screen printing and a temporary tattoo transfer process, a simple technique is established to: 1) enclose printed electronic features between two layers of ethyl cellulose (EtC), 2) mount printed microparticle carbon‐based electronics onto a variety of plant structures, and 3) dramatically increase the capacitance and sensitivity for humidity sensors when compared to unencapsulated devices. This sandwich tattoo capacitor (STC) platform exhibits an RH sensitivity up to 1000 pF/%RH and stability while mounted to living plant leaves over several days. Electrochemical impedance spectroscopy (EIS) validates the formation of electric double layers within the EtC films that encapsulate the printed electrodes providing tunable capacitance values based on the ionic concentration of the device transfer fluid.more » « less
-
Abstract The dissemination of sensors is key to realizing a sustainable, ‘intelligent’ world, where everyday objects and environments are equipped with sensing capabilities to advance the sustainability and quality of our lives—e.g. via smart homes, smart cities, smart healthcare, smart logistics, Industry 4.0, and precision agriculture. The realization of the full potential of these applications critically depends on the availability of easy-to-make, low-cost sensor technologies. Sensors based on printable electronic materials offer the ideal platform: they can be fabricated through simple methods (e.g. printing and coating) and are compatible with high-throughput roll-to-roll processing. Moreover, printable electronic materials often allow the fabrication of sensors on flexible/stretchable/biodegradable substrates, thereby enabling the deployment of sensors in unconventional settings. Fulfilling the promise of printable electronic materials for sensing will require materials and device innovations to enhance their ability to transduce external stimuli—light, ionizing radiation, pressure, strain, force, temperature, gas, vapours, humidity, and other chemical and biological analytes. This Roadmap brings together the viewpoints of experts in various printable sensing materials—and devices thereof—to provide insights into the status and outlook of the field. Alongside recent materials and device innovations, the roadmap discusses the key outstanding challenges pertaining to each printable sensing technology. Finally, the Roadmap points to promising directions to overcome these challenges and thus enable ubiquitous sensing for a sustainable, ‘intelligent’ world.more » « lessFree, publicly-accessible full text available August 9, 2025
-
Abstract Low‐cost biosensors that can rapidly and widely monitor plant nutritional levels will be critical for better understanding plant health and improving precision agriculture decision making. In this work, fully printed ion‐selective organic electrochemical transistors (OECTs) that can detect macronutrient concentrations in whole plant sap are described. Potassium, the most concentrated cation in the majority of plants, is selected as the target analyte as it plays a critical role in plant growth and development. The ion sensors demonstrate high current (170 µA dec−1) and voltage (99 mV dec−1) sensitivity, and a low limit of detection (10 × 10−6 m). These OECT biosensors can be used to determine potassium concentration in raw sap and sap‐like aqueous environments demonstrating a log‐linear response within the expected physiological range of cations in plants. The performance of these printed devices enables their use in high‐throughput plant health monitoring in agricultural and ecological applications.more » « less