skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bilodeau, Camille"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 3, 2026
  2. Multi-modal learning by means of leveraging both 2D graph and 3D point cloud information has become a prevalent method to improve model performance in molecular property prediction. However, many recent techniques focus on specific pre-training tasks such as contrastive learning, feature blending, and atom/subgraph masking in order to learn multi-modality even though design of model architecture is also impactful for both pre-training and downstream task performance. Relying on pre-training tasks to align 2D and 3D modalities lacks direct interaction which may be more effective in multimodal learning. In this work, we propose MolInteract, which takes a simple yet effective architecture-focused approach to multimodal molecule learning which addresses these challenges. MolInteract leverages an interaction layer for fusing 2D and 3D information and fostering cross-modal alignment, showing strong results using even the simplest pre-training methods such as predicting features of the 3D point cloud and 2D graph. MolInteract exceeds state-of-the-art multimodal pre-training techniques and architectures on various downstream 2D and 3D molecule property prediction benchmark tasks. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)