skip to main content

Search for: All records

Creators/Authors contains: "Bindeman, Ilya N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigated the state of the arc background mantle (i.e. mantle wedge without slab component) by means of olivine CaO and its Cr-spinel inclusions in a series of high-Mg# volcanic rocks from the Quaternary Trans-Mexican Volcanic Belt. Olivine CaO was paired with the Cr# [molar Cr/(Cr + Al) *100] of Cr-spinel inclusions, and 337 olivine+Cr-spinel pairs were obtained from 33 calc-alkaline, high-K and OIB-type arc front volcanic rocks, and three monogenetic rear-arc basalts that lack subduction signatures. Olivine+Cr-spinels display coherent elemental and He–O isotopic systematics that contrast with the compositional diversity of the bulk rocks. All arc front olivines have low CaO (0.135 ± 0.029 wt %) relative to rear-arc olivines which have the higher CaO (0.248 ± 0.028 wt %) of olivines from mid-ocean ridge basalts. Olivine 3He/4He–δ18O isotope systematics confirm that the olivine+Cr-spinels are not, or negligibly, affected by crustal basement contamination, and thus preserve compositional characteristics of primary arc magmas. Variations in melt H2O contents in the arc front series and the decoupling of olivine CaO and Ni are inconsistent with controls on the olivine CaO by melt water and/or secondary mantle pyroxenites. Instead, we propose that low olivine CaO reflects the typical low melt CaO of high-Mg# arc magmas erupting through thick crust. We interpret the inverse correlation of olivine CaO and Cr-spinel Cr# over a broad range of Cr# (~10–70) as co-variations of CaO, Al and Cr of their (near) primary host melts, which derived from a mantle that has been variably depleted by slab-flux driven serial melt extraction. Our results obviate the need for advecting depleted residual mantle from rear- and back-arc region, but do not upset the larger underlying global variations of melt CaO high-Mg# arc magmas worldwide, despite leading to considerable regional variations of melt CaO at the arc front of the Trans-Mexican Volcanic Belt.

    more » « less
  2. Active felsic magmatism has been rarely probedin situby drilling but one recent exception is quenched rhyolite sampled during the 2009 Iceland Deep Drilling Project (IDDP). We report finding of rare zircons of up to ∼100 µm in size in rhyolite glasses from the IDDP-1 well products and the host 1724 AD Viti granophyres. The applied SHRIMP U-Th dating for both the IDDP and the Viti granophyre zircons gives zero-age (±2 kyr), and therefore suggests that the IDDP-1 zircons have crystallized from an active magma intrusion rather than due to the 20–80 ka post-caldera magmatic episodes recorded by nearby domes and ridges. Ti-in-zircon geothermometer for Viti granophyre reveals zircon crystallization temperatures ∼800°C–900°C, whereas IDDP-1 rhyolite zircon cores show Ti content higher than 100 ppm, corresponding to temperatures up to ∼1,100°C according to the Ti-in-zircon thermometer. According to our thermochemical model at such elevated temperatures as 1,100°C, rhyolitic magma cannot be saturated with zircon and zircon crystallization is not possible. We explain this controversy by either kinetic effects or non-ideal Ti incorporation into growing zircons at low pressures that start to grow from nucleus at temperatures ∼930°C. High temperatures recorded by IDDP-1 zircon together with an occurrence of baddeleyite require that the rhyolite magma formed by partial melting of the host granophyre due to basaltic magma intrusion. Zr concentration profiles in glass around zircons are flat, suggesting residence in rhyolitic melt for >4 years. In our thermochemical modeling, three scenarios are considered. The host felsite rocks are intruded by: 1) a basaltic sill, 2) rhyolite magma 3) rhyolite sill connected to a deeper magmatic system. Based on the solution of the heat conduction equation accounting for the release of latent heat and effective thermal conductivity, these data confirm that the rhyolite magma could be produced by felsic crust melting as a result of injection of a basaltic or rhyolite sill during the Krafla Fires eruption (1975 AD).

    more » « less
    Free, publicly-accessible full text available November 16, 2024
  3. Abstract

    The Early Jurassic Butcher Ridge Igneous Complex (BRIC) in the Transantarctic Mountains contains abundant and variably hydrated silicic glass which has the potential to preserve a rich paleoclimate record. Here we present Fourier Transform Infrared Spectroscopic data that indicates BRIC glasses contain up to ~8 wt.% molecular water (H2Om), and low (<0.8 wt.%) hydroxyl (OH) component, interpreted as evidence for secondary hydration by meteoric water. BRIC glasses contain the most depleted hydrogen isotopes yet measured in terrestrial rocks, down to δD = −325 ‰. In situ40Ar/39Ar geochronology of hydrated glasses with ultra-depleted δD values yield ages from 105 Ma to 72 Ma with a peak at c. 91.4 Ma. Combined, these data suggest hydration of BRIC glasses by polar glacial ice and melt water during the Late Cretaceous, contradicting paleoclimate reconstructions of this period that suggest Antarctica was ice-free and part of a global hot greenhouse.

    more » « less
  4. Abstract

    Oxygen isotopic ratios are largely homogenous in the bulk of Earth’s mantle but are strongly fractionated near the Earth’s surface, thus these are robust indicators of recycling of surface materials to the mantle. Here we document a subtle but significant ~0.2‰ temporal decrease in δ18O in the shallowest continental lithospheric mantle since the Archean, no change in Δ′17O is observed. Younger samples document a decrease and greater heterogeneity of δ18O due to the development and progression of plate tectonics and subduction. We posit that δ18O in the oldest Archean samples provides the best δ18O estimate for the Earth of 5.37‰ for olivine and 5.57‰ for bulk peridotite, values that are comparable to lunar rocks as the moon did not have plate tectonics. Given the large volume of the continental lithospheric mantle, even small decreases in its δ18O may explain the increasing δ18O of the continental crust since oxygen is progressively redistributed by fluids between these reservoirs via high-δ18O sediment accretion and low-δ18O mantle in subduction zones.

    more » « less
  5. This Chapter considers triple oxygen isotope variations and their 4 Gyr temporal evolution in bulk siliciclastic sedimentary rocks and in granites. The d18O and D'17O values provide new insights into weathering in the modern and ancient hydrosphere and coeval crustal petrogenesis. We make use of the known geological events and processes that affect the rock cycle: supercontinent assembly and breakup that influence continent-scale and global climate, the fraction of the exposed crust undergoing weathering, and isotopic values of precipitation. New data from a 5000 m Texas drillhole into the Oligocene Frio Formation demonstrate minimal isotopic shifts from mudrocks to shales during diagenesis, mostly related to expulsion of water from smectite-rich loosely cemented sediment and its conversion to illite-rich shale. Inversion of triple oxygen isotope fractionations return isotopic values and temperatures along the hole depth that are more consistent with weathering conditions in the Oligocene and modern North America (d18O = -7 to -15‰, and T of +15 to +45°C) rather than d18O from 8 to 10‰ diagenetic water in the drill hole at 175-195°C. More precise T and d18Owater are obtained where the chemical index of alteration (CIA) based detrital contribution is subtracted from these sediments. Triple oxygen isotopes from suspended sediments in major world rivers record conditions (T and d18Ow) of their watersheds, and not the composition of bedrock because weathering is water-dominated. In parallel, the Chapter presents new analyses of 100 granites, orthogneisses, migmatites, tonalite-trondhjemite-granodiorite (TTG), and large-volume ignimbrites from around the world that range in age from 4 Ga to modern. Most studied granites are orogenic and anatectic in origin and represent large volume remelting/assimilation of shales and other metasediments; the most crustal and high-d18O of these are thus reflect and record the average composition of evolving continental crust. Granites also develop a significant progressive increase in d18O values from 6-7‰ (4-2.5 Ga) to 10-13‰ (~1.8-1.2 Ga) after which d18O stays constant or even decreases. More importantly, we observe a moderate -0.03‰ step-wise decrease in D'17O between 2.1 and 2.5 Ga, which is about half of the step-wise decrease observed in shales over this time interval. We suggest that granites, as well as shales, record the significant advent and greater volumetric appearance of low-D'17O, high-d18O weathering products (shales) altered by meteoric waters upon rapid emergence of large land masses at ~2.4 Ga, although consider alternative interpretations. These weathering products were incorporated into abundant 2.0-1.8 Ga orogens around the world, where upon remelting, they passed their isotopic signature to the granites. We further observe the dichotomy of high-D'17O Archean shales, and unusually low-D'17O Archean granites. We attribute this to greater contribution from shallow crustal hydrothermal contribution to shales in greenstone belts, while granites in the earliest 3.0-4.0 Ga crust and TTGs require involvement of hydrothermal products with lower-D'17O signatures at moderately high-d18O, which we attribute to secondary silicification of their protoliths before partial melting. The Chapter further discusses evolution of the shale record through geologic history and discusses the step-wise change in d18O and D'17O values at Archean/Proterozoic transition. Denser coverage for shales in the past 1 billion years permits investigation of the rocks and their weathering in the last supercontinent cycle, with observed lighter d18O values, characteristic for the mid-Phanerozoic at the initiation of Gondwana breakup. The continuing increase in d18O values of the shales since 4 Ga is interpreted to reflect accumulation of weathering products via shale accretion to continents, as low-density and buoyant shales tend to not subduct back into the mantle. The rock cycle passes triple oxygen isotopic signatures from precipitation to sedimentary, metasedimentary, and finally to anatectic igneous rocks. Continental crust became progressively heavier in d18O, lighter in D'17O due to incremental accumulation of high-d18O sediments in accretionary wedges. Second-order trends in d18O and D'17O are due to supercontinent cycles and glacial episodes. 
    more » « less
  6. null (Ed.)
    There is abundant evidence for significant H2O in evolved melts from the platinum-rich UG2 chromitite and the Merensky Reef of the Bushveld Complex (South Africa), but there is no consensus about the source of H2O. We report triple-oxygen and hydrogen isotope ratios of interstitial, late-magmatic phlogopite from three localities of the UG2 layer. The phlogopite yielded δD values of –43‰ to –23‰, which is >30‰ higher than previously known from Bushveld rocks and far above the mantle values of ~–75‰. The phlogopite triple-oxygen isotope ratios are the first to be reported for Bushveld rocks, with values of Δ′17O0.5305 (17O excess relative to the reference line 0.5305) from –0.069‰ to –0.044‰ (δ18O 5.2‰–6.2‰). The oxygen data support existing models of as much as 30%–40% contamination of mantle-derived magmas in the lower to middle crust. However, the high δD values require a second step of contamination, which we attribute to brines from the marine sediments in the Transvaal Basin at the emplacement level. 
    more » « less