skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Birnhack, Liat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Understanding the mechanisms of molecular transport in polyamide membranes is imperative to improve their solute-specific selectivity. We explored the partitioning behaviors of water and salts in polyamide membranes to elucidate the role of ion-membrane interactions in the transport. Quartz crystal microbalance (QCM) was employed to quantify the mass uptake at different temperatures and determine partition energies (Ek) for water and salts under two different pH values. Zeta potential and permeability tests were conducted to support the ionmembrane affinity trends observed with QCM and link these trends to ion-ion selectivity. Our results demonstrate a high affinity of water to the polyamide membrane (Ek < 0), with a significant swelling effect attributed to dipole interactions and hydrogen bonding. Ion partitioning revealed distinct differences between monovalent and divalent cations, as well as between kosmotropic and chaotropic anions. Specifically, divalent cations (Ca2+ and Mg2+) exhibited considerably lower partition energies (-0.99 and 0.29 kcal mol-1, respectively) and more efficient charge neutralization, indicating stronger interactions with the membrane compared to monovalent cations (~2.2 kcal mol-1). The partition energies of the chaotropic iodide and kosmotropic sulphate anions were substantially different (-5.5 and 4.0 kcal mol-1, respectively), likely due to the different tendency of these anions to shed their hydration shell and stick to the polymer. Last, our permeability tests indicate the potential existence of an intrinsic tradeoff between ion partitioning and intrapore diffusion, presumably due to the opposite effects that ion-membrane interactions have on these transport steps. Overall, our work underscores the role of ionspecific interactions in membrane transport and selectivity. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract Considering growing efforts to understand and improve the solute-specific selectivity of nanofiltration (NF) membranes, we explored the ion-specific effects that govern the charge and performance of a loose polyamide NF membrane that is commonly used for solute-solute separations. Specifically, we systematically evaluated the zeta potential of the membrane under different conditions of pH, salinity, and ionic composition, and correlated the obtained data with membrane performance tested under similar conditions. Our results identify the pKaof both carboxylic and amine groups bonded to the membrane surface and suggest that the highly polarizable chloride anions in the solution adsorb to the polyamide, increasing its negative charge. We also show that monovalent cations of different “stickiness” can neutralize the negative membrane charge to different extents due to their varying tendency to sorb to the polymer matrix or screen the fixed carboxyl groups on the membrane surface. Notably, our correlation between zeta potential measurements and permeability experiments indicates the substantial contribution of solution ions to Donnan exclusion in NF membranes. 
    more » « less