skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Birnie-Gauvin, Kim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish’s daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem. 
    more » « less