skip to main content

Search for: All records

Creators/Authors contains: "Birol, Turan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrolyte-gate transistors are a powerful platform for control of material properties, spanning semiconducting behavior, insulator-metal transitions, superconductivity, magnetism, optical properties, etc. When applied to magnetic materials, for example, electrolyte-gate devices are promising for magnetoionics, wherein voltage-driven ionic motion enables low-power control of magnetic order and properties. The mechanisms of electrolyte gating with ionic liquids and gels vary from predominantly electrostatic to entirely electrochemical, however, sometimes even in single material families, for reasons that remain unclear. In this Perspective, we compare literature ionic liquid and ion gel gating data on two rather different material classes—perovskite oxides and pyrite-structure sulfides—seeking to understand which material factors dictate the electrostatic vs electrochemical gate response. From these comparisons, we argue that the ambient-temperature anion vacancy diffusion coefficient ( not the vacancy formation energy) is a critical factor controlling electrostatic vs electrochemical mechanisms in electrolyte gating of these materials. We, in fact, suggest that the diffusivity of lowest-formation-energy defects may often dictate the electrostatic vs electrochemical response in electrolyte-gated inorganic materials, thereby advancing a concrete hypothesis for further exploration in a broader range of materials. 
    more » « less
  2. Abstract The kagome metals of the family A V 3 Sb 5 , featuring a unique structural motif, harbor an array of intriguing phenomena such as chiral charge order and superconductivity. CsV 3 Sb 5 is of particular interest because it displays a double superconducting dome in the region of the temperature-pressure phase diagram where charge order is still present. However, the microscopic origin of such an unusual behavior remains an unsolved issue. Here, to address it, we combine high-pressure, low-temperature muon spin relaxation/rotation with first-principles calculations. We observe a pressure-induced threefold enhancement of the superfluid density, which also displays a double-peak feature, similar to the superconducting critical temperature. This leads to three distinct regions in the phase diagram, each of which features distinct slopes of the linear relation between superfluid density and the critical temperature. These results are attributed to a possible evolution of the charge order pattern from the superimposed tri-hexagonal Star-of-David phase at low pressures (within the first dome) to the staggered tri-hexagonal phase at intermediate pressures (between the first and second domes). Our findings suggest a change in the nature of the charge-ordered state across the phase diagram of CsV 3 Sb 5 , with varying degrees of competition with superconductivity. 
    more » « less