Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We introduce CREStE, a scalable learning-based mapless navigation framework to address the open-world generalization and robustness challenges of outdoor urban navigation. Key to achieving this is learning perceptual representations that generalize to open-set factors (e.g. novel semantic classes, terrains, dynamic entities) and inferring expert-aligned navigation costs from limited demonstrations. CREStE addresses both these issues, introducing 1) a visual foundation model (VFM) distillation objective for learning open-set structured bird's-eye-view perceptual representations, and 2) counterfactual inverse reinforcement learning (IRL), a novel active learning formulation that uses counterfactual trajectory demonstrations to reason about the most important cues when inferring navigation costs. We evaluate CREStE on the task of kilometer-scale mapless navigation in a variety of city, offroad, and residential environments and find that it outperforms all state-of-the-art approaches with 70% fewer human interventions, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. Videos and additional materials can be found on the project page: this https URLmore » « lessFree, publicly-accessible full text available June 26, 2026
- 
            Free, publicly-accessible full text available June 21, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available June 11, 2026
- 
            In autonomous robot navigation, terrain cost assignment is typically performed using a semantics-based paradigm in which terrain is first labeled using a pre-trained semantic classifier and costs are then assigned according to a user-defined mapping between label and cost. While this approach is rapidly adaptable to changing user preferences, only preferences over the types of terrain that are already known by the semantic classifier can be expressed. In this paper, we hypothesize that a machine-learning-based alternative to the semantics-based paradigm above will allow for rapid cost assignment adaptation to preferences expressed over new terrains at deployment time without the need for additional training. To investigate this hypothesis, we introduce and study PACER, a novel approach to costmap generation that accepts as input a single birds-eye view (BEV) image of the surrounding area along with a user-specified preference context and generates a corresponding BEV costmap that aligns with the preference context. Using both real and synthetic data along with a combination of proposed training tasks, we find that PACER is able to adapt quickly to new user preferences while also exhibiting better generalization to novel terrains compared to both semantics-based and representation-learning approaches.more » « lessFree, publicly-accessible full text available April 10, 2026
- 
            This paper addresses the problem of preference learning, which aims to align robot behaviors through learning user-specific preferences (e.g. “good pull-over location”) from visual demonstrations. Despite its similarity to learning factualconcepts (e.g. “red door”), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is aneuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs – facilitating inspection of individual parts for alignment – in a domain-specificlanguage (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out-of-distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            We describe the development of a one-credit course to promote AI literacy at the University of Texas at Austin. In response to a call for the rapid deployment of class that would serve a broad audience in Fall of 2023, we designed a 14-week seminar-style course that incorporated an interdisciplinary group of speakers who lectured on topics ranging from the fundamentals of AI to societal concerns including disinformation and employment. University students, faculty, and staff, and even community members outside of the University were invited to enroll in this online offering: The Essentials of AI for Life and Society. We collected feedback from course participants through weekly reflections and a final survey. Satisfyingly, we found that attendees reported gains in their AI literacy. We sought critical feedback through quantitative and qualitative analysis, which uncovered challenges in designing a course for this general audience. We utilized the course feedback to design a three-credit version of the course that is being offered in Fall of 2024. The lessons we learned and our plans for this new iteration may serve as a guide to instructors designing AI courses for a broad audience.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            This paper addresses the problem of preference learning, which aims to align robot behaviors through learning userspecific preferences (e.g. “good pull-over location”) from visual demonstrations. Despite its similarity to learning factual concepts (e.g. “red door”), preference learning is a fundamentally harder problem due to its subjective nature and the paucity of person-specific training data. We address this problem using a novel framework called SYNAPSE, which is a neuro-symbolic approach designed to efficiently learn preferential concepts from limited data. SYNAPSE represents preferences as neuro-symbolic programs – facilitating inspection of individual parts for alignment – in a domain-specific language (DSL) that operates over images and leverages a novel combination of visual parsing, large language models, and program synthesis to learn programs representing individual preferences. We perform extensive evaluations on various preferential concepts as well as user case studies demonstrating its ability to align well with dissimilar user preferences. Our method significantly outperforms baselines, especially when it comes to out-of-distribution generalization. We show the importance of the design choices in the framework through multiple ablation studies.more » « lessFree, publicly-accessible full text available January 14, 2026
- 
            Among approaches for provably safe reinforcement learning, Model Predictive Shielding (MPS) has proven effective at complex tasks in continuous, high-dimensional state spaces, by leveraging a backup policy to ensure safety when the learned policy attempts to take risky actions. However, while MPS can ensure safety both during and after training, it often hinders task progress due to the conservative and task-oblivious nature of backup policies. This paper introduces Dynamic Model Predictive Shielding (DMPS), which optimizes reinforcement learning objectives while maintaining provable safety. DMPS employs a local planner to dynamically select safe recovery actions that maximize both short-term progress as well as long-term rewards. Crucially, the planner and the neural policy play a synergistic role in DMPS. When planning recovery actions for ensuring safety, the planner utilizes the neural policy to estimate long-term rewards, allowing it to observe beyond its short-term planning horizon. Conversely, the neural policy under training learns from the recovery plans proposed by the planner, converging to policies that are both high-performing and safe in practice. This approach guarantees safety during and after training, with bounded recovery regret that decreases exponentially with planning horizon depth. Experimental results demonstrate that DMPS converges to policies that rarely require shield interventions after training and achieve higher rewards compared to several state-of-the-art baselinesmore » « lessFree, publicly-accessible full text available December 20, 2025
- 
            Free, publicly-accessible full text available December 12, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
