skip to main content


Search for: All records

Creators/Authors contains: "Biswas, Mrinal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and intensity, as these are some of the most important characteristics of TCs and are often the principal verification concerns of operational forecast centers. However, there is a growing need to verify other aspects of TCs as process-based validation techniques may be increasingly necessary for further track and intensity forecast improvements as well as improving communication of the broad impacts of TCs including inland flooding from precipitation. Here we present a set of TC-focused verification methods available via the Model Evaluation Tools (MET) ranging from traditional approaches to the application of storm-centric coordinates and the use of feature-based verification of spatially defined TC objects. Storm-relative verification using observed and forecast tracks can be useful for identifying model biases in precipitation accumulation in relation to the storm center. Using a storm-centric cylindrical coordinate system based on the radius of maximum wind adds additional storm-relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This powerful process-based model diagnostic and verification technique provides a framework for improved understanding of feedbacks between forecast tracks, intensity, and precipitation distributions. Finally, object-based verification including land masking capabilities provides even more nuanced verification options. Precipitation objects of interest, either the central core of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and quickly aggregated to build meaningful spatial and summary verification statistics.

     
    more » « less
  2. null (Ed.)
    This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades. 
    more » « less
  3. Abstract

    This paper examines the accuracy of Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem) generated 72 hr fine particulate matter (PM2.5) forecasts in Delhi during the crop residue burning season of October‐November 2017 with respect to assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals, persistent fire emission assumption, and aerosol‐radiation interactions. The assimilation significantly pushes the model AOD and PM2.5toward the observations with the largest changes below 5 km altitude in the fire source regions (northeastern Pakistan, Punjab, and Haryana) as well as the receptor New Delhi. WRF‐Chem forecast with MODIS AOD assimilation, aerosol‐radiation feedback turned on, and real‐time fire emissions reduce the mean bias by 88–195 μg/m3(70–86%) with the largest improvement during the peak air pollution episode of 6–13 November 2017. Aerosol‐radiation feedback contributes ~21%, ~25%, and ~24% to reduction in mean bias of the first, second, and third days of PM2.5forecast. Persistence fire emission assumption is found to work really well, as the accuracy of PM2.5forecasts driven by persistent fire emissions was only 6% lower compared to those driven by real fire emissions. Aerosol‐radiation feedback extends the benefits of assimilating satellite AOD beyond PM2.5forecasts to surface temperature forecast with a reduction in the mean bias of 0.9–1.5°C (17–30%). These results demonstrate that air quality forecasting can benefit substantially from satellite AOD observations particularly in developing countries that lack resources to rapidly build dense air quality monitoring networks.

     
    more » « less
  4. The Developmental Testbed Center (DTC) tested two convective parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model and compared them in terms of performance of forecasting tropical cyclones (TCs). Several TC forecasts were conducted with the scale-aware Simplified Arakawa Schubert (SAS) and Grell–Freitas (GF) convective schemes over the Atlantic basin. For this sample of over 100 cases, the storm track and intensity forecasts were superior for the GF scheme compared to SAS. A case study showed improved storm structure for GF when compared with radar observations. The GF run had increased inflow in the boundary layer, which resulted in higher angular momentum. An angular momentum budget analysis shows that the difference in the contribution of the eddy transport to the total angular momentum tendency is small between the two forecasts. The main difference is in the mean transport term, especially in the boundary layer. The temperature tendencies indicate higher contribution from the microphysics and cumulus heating above the boundary layer in the GF run. A temperature budget analysis indicated that both the temperature advection and diabatic heating were the dominant terms and they were larger near the storm center in the GF run than in the SAS run. The above results support the superior performance of the GF scheme for TC intensity forecast.

     
    more » « less