Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 8, 2026
-
null (Ed.)The Cook-Austral volcanic lineament extends from Macdonald Seamount (east) to Aitutaki Island (west) in the South Pacific Ocean and consists of hotspot-related volcanic islands, seamounts, and atolls. The Cook-Austral volcanic lineament has been characterized as multiple overlapping, age-progressive hotspot tracks generated by at least two mantle plumes, including the Arago and Macdonald plumes, which have fed volcano construction for ~20 m.y. The Arago and Macdonald hotspot tracks are argued to have been active for at least 70 m.y. and to extend northwest of the Cook-Austral volcanic lineament into the Cretaceous-aged Tuvalu-Gilbert and Tokelau Island chains, respectively. Large gaps in sampling exist along the predicted hotspot tracks, complicating efforts seeking to show that the Arago and Macdonald hotspots have been continuous, long-lived sources of hotspot volcanism back into the Cretaceous. We present new major- and trace-element concentrations and radiogenic isotopes for three seamounts (Moki, Malulu, Dino) and one atoll (Rose), and new clinopyroxene 40Ar/39Ar ages for Rose (24.81 ± 1.02 Ma) and Moki (44.53 ± 10.05 Ma). All volcanoes are located in the poorly sampled region between the younger Cook-Austral and the older, Cretaceous portions of the Arago and Macdonald hotspot tracks. Absolute plate motion modeling indicates that the Rose and Moki volcanoes lie on or near the reconstructed traces of the Arago and Macdonald hotspots, respectively, and the 40Ar/39Ar ages for Rose and Moki align with the predicted age progression for the Arago (Rose) and Macdonald (Moki) hotspots, thereby linking the younger Cook-Austral and older Cretaceous portions of the long-lived (>70 m.y.) Arago and Macdonald hotspot tracks.more » « less
-
Abstract The Earth's upper mantle is isotopically heterogeneous over large lengthscales, but the lower limit of these heterogeneities is not well quantified. Grain scale trace elemental variability has been observed in mantle peridotites, which suggests that isotopic heterogeneity may be preserved as well. Recent advances in isotope ratio mass spectrometry enable isotopic analysis of very small samples (e.g., nanograms or less of analyte) while maintaining the precision necessary for meaningful interpretation. Here we examine four peridotite xenoliths—hosted in lavas from Savai'i (Samoa hotspot) and Tahiti (Societies hotspot) islands—that exhibit grain scale trace element heterogeneity likely related to trapped fluid and/or melt inclusions. To evaluate whether this heterogeneity is also reflected in grain scale isotopic heterogeneity, we separated clinopyroxene, orthopyroxene, and (in the most geochemically enriched xenolith) olivine for single‐grain87Sr/86Sr and143Nd/144Nd analyses. We find, in some xenoliths, extreme intra‐xenolith isotopic heterogeneity. For example, in one xenolith, different mineral grains range in87Sr/86Sr from 0.70987 to 0.71321, with corresponding variability in143Nd/144Nd from 0.512331 to 0.512462. However, not all peridotite xenoliths which display trace elemental heterogeneity exhibit isotopic heterogeneity. Based on coupled isotopic and trace element data (i.e., a negatively‐sloping trend in87Sr/86Sr vs. Ti/Eu), we suggest that carbonatitic metasomatism is responsible for creating the intra‐xenolith isotopic heterogeneities which we observe. This carbonatitic component falls off the array defined in87Sr/86Sr‐143Nd/144Nd space by Samoa hotspot basalts, which suggests a second, distinct EM2 (enriched mantle II) component is present in the Samoa hotspot that is not readily recognized in erupted products, but is instead seen only in mantle peridotite xenoliths.more » « less
An official website of the United States government
