skip to main content

Search for: All records

Creators/Authors contains: "Bizyaev, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Previous results in the literature have found the young inner-disc open cluster NGC 6705 to be mildly α-enhanced. We examined this possibility via an independent chemical abundance analysis for 11 red-giant members of NGC 6705. The analysis is based on near-infrared APOGEE spectra and relies on LTE calculations using spherical model atmospheres and radiative transfer. We find a mean cluster metallicity of $\rm [Fe/H] = +0.13 \pm 0.04$, indicating that NGC 6705 is metal-rich, as may be expected for a young inner-disc cluster. The mean α-element abundance relative to iron is $\rm \langle [\alpha /Fe]\rangle =-0.03 \pm 0.05$, which is not at odds with expectations from general Galactic abundance trends. NGC 6705 also provides important probes for studying stellar mixing, given its turn-off mass of M ∼ 3.3 M⊙. Its red giants have low 12C abundances ([12C/Fe] = −0.16) and enhanced 14N abundances ([14N/Fe] = +0.51), which are key signatures of the first dredge-up on the red giant branch. An additional signature of dredge-up was found in the Na abundances, which are enhanced by [Na/Fe] = +0.29, with a very small non-LTE correction. The 16O and Al abundances are found to be near-solar. All of the derived mixing-sensitive abundances are in agreement with stellar models of approximately 3.3 M⊙ evolving along the red giant branch and onto the red clump. As found in young open clusters with similar metallicities, NGC 6705 exhibits a mild excess in the s-process element cerium with $\rm [Ce/Fe] = +0.13\pm 0.07$.

    more » « less

    Gradients in the stellar populations (SP) of galaxies – e.g. in age, metallicity, stellar initial mass function (IMF) – can result in gradients in the stellar-mass-to-light ratio, M*/L. Such gradients imply that the distribution of the stellar mass and light is different. For old SPs, e.g. in early-type galaxies at z ∼ 0, the M*/L gradients are weak if driven by variations in age and metallicity, but significantly larger if driven by the IMF. A gradient which has larger M*/L in the centre increases the estimated total stellar mass (M*) and reduces the scale which contains half this mass (Re,*), compared to when the gradient is ignored. For the IMF gradients inferred from fitting MILES simple SP models to the H β, 〈Fe〉, [MgFe], and TiO2SDSS absorption lines measured in spatially resolved spectra of early-type galaxies in the MaNGA survey, the fractional change in Re,* can be significantly larger than that in M*, especially when the light is more centrally concentrated. The Re,*–M* correlation which results from accounting for IMF gradients is offset to smaller sizes by 0.3 dex compared to when these gradients are ignored. Comparisons with ‘quiescent’ galaxies at higher z must account for evolution in SP gradients (especially age and IMF) and in the light profile before drawing conclusions about how Re,* and M* evolve. The implied merging between higher z and the present is less contrived if Re,*/Re at z ∼ 0 is closer to our IMF-driven gradient calibration than to unity.

    more » « less

    We present a catalogue of 16 551 edge-on galaxies created using the public DR2 data of the Pan-STARRS survey. The catalogue covers the three quarters of the sky above Dec. = −30°. The galaxies were selected using a convolutional neural network, trained on a sample of edge-on galaxies identified earlier in the SDSS survey. This approach allows us to dramatically improve the quality of the candidate selection and perform a thorough visual inspection in a reasonable amount of time. The catalogue provides homogeneous information on astrometry, SExtractor photometry, and non-parametric morphological statistics of the galaxies. The photometry is reliably for objects in the 13.8–17.4 r-band magnitude range. According to the HyperLeda data base, redshifts are known for about 63 per cent of the galaxies in the catalogue. Our sample is well separated into the red sequence and blue cloud galaxy populations. The edge-on galaxies of the red sequence are systematically Δ(g − i) ≈ 0.1 mag redder than galaxies oriented at an arbitrary angle to the observer. We found a variation of the galaxy thickness with the galaxy colour. The red sequence galaxies are thicker than the galaxies of the blue cloud. In the blue cloud, on average, thinner galaxies turn out to be bluer. In the future, based on this catalogue it is intended to explore the three-dimensional structure of galaxies of different morphologies, as well as to study the scaling relations for discs and bulges.

    more » « less
  4. Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts. 
    more » « less
  5. We use the first release of the SDSS/MaStar stellar library comprising ∼9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36-1.03 μm and share the same spectral resolution (R~1800) and flux calibration as the SDSS-IV/MaNGA galaxy data. The parameter space covered by the stellar spectra collected thus far allows the calculation of models with ages and chemical composition in the range t>200 Myr, -2 < [Z/H] < + 0.35, which will be extended as MaStar proceeds. Notably, the models include spectra for dwarf Main Sequence stars close to the core H-burning limit, as well spectra for cold, metal-rich giants. Both stellar types are crucial for modelling λ >0.7μm absorption spectra. Moreover, a better parameter coverage at low metallicity allows the calculation of models as young as 500 Myr and the full account of the Blue Horizontal Branch phase of old populations. We present models adopting two independent sets of stellar parameters (Teff, logg, [Z/H]). In a novel approach, their reliability is tested ’on the fly’ using the stellar population models themselves. We perform tests with Milky Way and Magellanic Clouds globular clusters, finding that the new models recover their ages and metallicities remarkably well, with systematics as low as a few per cent for homogeneous calibration sets. We also fit a MaNGA galaxy spectrum, finding residuals of the order of a few per cent comparable to the state-of-art models, but now over a wider wavelength range. 
    more » « less