- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bjorck, Johan (2)
-
Gomes, Carla (2)
-
Kabra, Anmol (2)
-
Weinberger, Kilian Q. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-negative matrix factorization (NMF) is a highly celebrated algorithm for matrix decomposition that guarantees non-negative factors. The underlying optimization problem is computationally intractable, yet in practice, gradient-descent-based methods often find good solutions. In this paper, we revisit the NMF optimization problem and analyze its loss landscape in non-worst-case settings. It has recently been observed that gradients in deep networks tend to point towards the final minimizer throughout the optimization procedure. We show that a similar property holds (with high probability) for NMF, provably in a non-worst case model with a planted solution, and empirically across an extensive suite of real-world NMF problems. Our analysis predicts that this property becomes more likely with growing number of parameters, and experiments suggest that a similar trend might also hold for deep neural networks---turning increasing dataset sizes and model sizes into a blessing from an optimization perspective.more » « less
-
Bjorck, Johan; Kabra, Anmol; Weinberger, Kilian Q.; Gomes, Carla (, Proceedings of the AAAI Conference on Artificial Intelligence)
An official website of the United States government

Full Text Available