skip to main content

Search for: All records

Creators/Authors contains: "Bjorklund, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beyond engineering skills, today’s graduates are expected to have a number of professional skills by the time they enter the working world. Increasingly, innovation is one of the arenas where professional engineers should be adept at operating. However, in order to educate our students for contributing to innovation activities in their organizations, we need a better understanding of the knowledge, skills and attitudes that are relevant for early-career engineers in their development efforts. As a starting point to add to this understanding, we start by asking: what does meaningful engineering work look like in the eyes of early career engineers? We then go on to consider engineering work that is not only meaningful but also innovative, asking: What does innovative work look like in the eyes of early career engineers? Finally, we consider: How do innovative work and engineering work more generally compare? Based on qualitative in-depth semi-structured interviews, this paper analyzes the work experiences of 13 young engineers in their first years of work after graduating from universities in the United States. Interviewee-reported critical incidents of top and bottom moments, as well as experiences in creating, advancing and implementing new ideas in work, were coded into different dimensions ofmore »learning experiences according to Mezirow’s [1] transformative learning theory in order to understand better what these experiences comprise. Many positively experienced innovation efforts were related to implementing new features or components to products or process improvements, and collaboration and feedback played an important role in these efforts. Negatively experienced innovation efforts, in contrast, were related to a lack in implementation, solutions and resources. Top and bottom moments were strongly tied to the social dimension of work: top moments were typically related to camaraderie with peers or recognition coming from managers, and bottom experiences with an absence of social connections in addition to falling short of one’s own expectations. The results suggest that managers should be cognizant of the importance of social connections and feedback cycles with their young engineers who are looking for guidance and validation of their efforts. For educators, the results highlight the importance of equipping our graduates with skills suited to navigate this active, social landscape of engineering practice. There are more challenges to tackle in today’s educational settings to prepare students for the collaboration, people-coordination, presentation, and community-building skills they will need in their professional lives.« less
  2. In order be successful, engineers must ask their clients, coworkers, and bosses questions. Asking questions can improve work quality and make the asker appear smarter. However, people often hesitate to ask questions for fear of seeming incompetent or inferior. This study investigates: what characteristics and experiences are connected to engineering students’ perceptions of asking questions? We analyzed data from a survey of over a thousand engineering undergraduates across a nationally representative sample of 27 U.S. engineering schools. We focused on three dependent variables: question-asking self-efficacy (how confident students are in their ability to ask a lot of questions), social outcome expectations around asking questions (whether students believe if they ask a lot of questions, they will earn the respect of their colleagues), and career outcome expectations (whether they believe asking a lot of questions will hurt their chances for getting ahead at work). We were surprised to find that question-asking self-efficacy or outcome expectations did not significantly vary by gender, under-represented minority status, and school size. However, students with high question-asking self-efficacy and outcome expectations were more likely to have engaged in four extracurricular experiences: participating in an internship or co-op, conducting research with a faculty member, participating in amore »student group, and holding a leadership role in an organization or student group. The number of different types of these extracurricular activities a student engaged in correlated with question-asking self-efficacy and positive outcome expectations around asking questions. The results illustrate the relationship between extracurricular activities and students’ self-efficacy and behavior outcome expectations. The college experience is more than just formal academic classes. Students learn from experiences that occur after class or during the summer, and ideally these experiences complement class-derived skills and confidence in asking questions.« less
  3. Surveys often are used in educational research to gather information about respondents without considering the effect of survey questions on survey-takers themselves. Does the very act of taking a survey influence perspectives, mindsets, and even behaviors? Does a survey itself effectuate attitudinal change? Such effects of surveys, and implications for survey data interpretation, warrant close attention. There is a long tradition of research on surveys as behavioral interventions within political science and social psychology, but limited attention has been given to the topic in engineering education, and higher education more broadly. Recently the engineering education community has started to examine the potential effects of assessment techniques (including surveys) as catalysts for reflection. In March 2014, the Consortium to Promote Reflection in Engineering Education (CPREE), representing a two-year collaboration amongst 12 campuses, was established to promote “a broader understanding and use of reflective techniques in engineering education.”1 CPREE’s formation suggests a growing recognition of reflection as an important and underemphasized aspect of an engineer’s education. CPREE defines reflection as “exploring the meaning of experiences and the consequences of the meanings for future action” and emphasizes the importance of taking action as a result of ascribing meaning to experiences.1 Surveys may bemore »one of several tools that may create opportunities for reflection; others include “exam wrappers” and “homework wrappers” that encourage students to explore how they feel about an assignment or task as part of making meaning of it2,3 (and stimulating the kind of reflection that can lead to action). The current study bridges these two frameworks of behavioral interventions and reflection to consider the “extra-ordinate” dimensions of survey-taking and explores how survey participation may (1) support students’ reflection on past experiences, meaningmaking of these experiences, and insights that “inform [their] path going forward,”1 and (2) be associated with students’ subsequent behaviors. We first review a broader literature on the interventional effects on surveys in political studies and social psychology, after which we present the results obtained from including an optional reflection question at the end of an engineering education survey. We conclude that educators would benefit from considering the range of potential impacts that responding to questions may have on students’ thoughts and actions, rather than treating surveys as neutral data collection devices when designing their research.« less