skip to main content

Search for: All records

Creators/Authors contains: "Blair, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Baldauf, Sandra (Ed.)
    Abstract The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype–environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find thatmore »divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Abstract

    Genomic data continue to advance our understanding of species limits and biogeographic patterns. However, there is still no consensus regarding appropriate methods of phylogenomic analysis that make the best use of these heterogeneous data sets. In this study, we used thousands of ultraconserved element (UCE) loci from alligator lizards in the genus Gerrhonotus to compare and contrast species trees inferred using multiple contemporary methods and provide a time frame for biological diversification across the Mexican Transition Zone (MTZ). Concatenated maximum likelihood (ML) and Bayesian analyses provided highly congruent results, with differences limited to poorly supported nodes. Similar topologies were inferred from coalescent analyses in Bayesian Phylogenetics and Phylogeography and SVDquartets, albeit with lower support for some nodes. All divergence times fell within the Miocene, linking speciation to local Neogene vicariance and/or global cooling trends following the mid-Miocene Climatic Optimum. We detected a high level of genomic divergence for a morphologically distinct species restricted to the arid mountains of north-eastern Mexico, and erected a new genus to better reflect evolutionary history. In summary, our results further advocate leveraging the strengths and weaknesses of concatenation and coalescent methods, provide evidence for old divergences for alligator lizards, and indicate that the MTZmore »continues to harbour substantial unrecognized diversity.

    « less