- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Blair, Hugh T. (5)
-
Chen, Zhe (4)
-
Blair, Garrett J. (3)
-
Cong, Jason (2)
-
Aharoni, Daniel (1)
-
Bush, Daniel (1)
-
Cong, Jason Cong (1)
-
De Guzman, Rose M. (1)
-
Guo, Changliang (1)
-
Monaco, Joseph D. (1)
-
Zhang, Kechen (1)
-
Zhou, Jim (1)
-
and Cong, Jason (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ever-growing edge applications often require short processing latency and high energy efficiency to meet strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM) model can approximate conventional acausal algorithms with reduced latency and improved efficiency for real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications. We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation.more » « less
-
Chen, Zhe; Zhou, Jim; Blair, Garrett J.; Blair, Hugh T.; and Cong, Jason (, The IEEE Symposium on Circuits and Systems (ISCAS))
-
Chen, Zhe; Blair, Garrett J.; Blair, Hugh T.; Cong, Jason (, IEEE Biomedical Circuits and Systems Conference (BioCAS),)
-
Chen, Zhe; Blair, Garrett J.; Guo, Changliang; Aharoni, Daniel; Blair, Hugh T.; Cong, Jason Cong (, The 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS))
-
Monaco, Joseph D.; De Guzman, Rose M.; Blair, Hugh T.; Zhang, Kechen; Bush, Daniel (, PLOS Computational Biology)