skip to main content


Search for: All records

Creators/Authors contains: "Blanc, Guillermo A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marshall, Heather K. ; Spyromilio, Jason ; Usuda, Tomonori (Ed.)
  2. Abstract

    We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2–1) maps from the PHANGS–Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (Mmol≳ 105.3M). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS–ALMA footprint. We detect CO (2–1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2–1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2–1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN–molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2–1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2–1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2–1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities.

     
    more » « less
  3. Abstract We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer. 
    more » « less
    Free, publicly-accessible full text available February 1, 2024
  4. ABSTRACT

    Connecting the gas in H ii regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H ii regions evolve over time. With PHANGS–MUSE, we detect nearly 24 000 H ii regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS–HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H ii regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the $\mathrm{H}\, \alpha$ equivalent width $\mathrm{EW}(\mathrm{H}\, \alpha)$, the $\mathrm{H}\, \alpha/\mathrm{FUV}$ flux ratio, and the ionization parameter, log q. As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, $\mathrm{EW}(\mathrm{H}\, \alpha)$ and log q show the most consistent trends and appear to be most reliable tracers for the age of an H ii region.

     
    more » « less
  5. ABSTRACT

    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.

     
    more » « less
  6. Abstract The CO-to-H 2 conversion factor ( α CO ) is critical to studying molecular gas and star formation in galaxies. The value of α CO has been found to vary within and between galaxies, but the specific environmental conditions that cause these variations are not fully understood. Previous observations on ~kiloparsec scales revealed low values of α CO in the centers of some barred spiral galaxies, including NGC 3351. We present new Atacama Large Millimeter/submillimeter Array Band 3, 6, and 7 observations of 12 CO, 13 CO, and C 18 O lines on 100 pc scales in the inner ∼2 kpc of NGC 3351. Using multiline radiative transfer modeling and a Bayesian likelihood analysis, we infer the H 2 density, kinetic temperature, CO column density per line width, and CO isotopologue abundances on a pixel-by-pixel basis. Our modeling implies the existence of a dominant gas component with a density of 2–3 × 10 3 cm −3 in the central ∼1 kpc and a high temperature of 30–60 K near the nucleus and near the contact points that connect to the bar-driven inflows. Assuming a CO/H 2 abundance of 3 × 10 −4 , our analysis yields α CO ∼ 0.5–2.0 M ⊙ (K km s −1 pc 2 ) −1 with a decreasing trend with galactocentric radius in the central ∼1 kpc. The inflows show a substantially lower α CO ≲ 0.1 M ⊙ (K km s −1 pc 2 ) −1 , likely due to lower optical depths caused by turbulence or shear in the inflows. Over the whole region, this gives an intensity-weighted α CO of ∼1.5 M ⊙ (K km s −1 pc 2 ) −1 , which is similar to previous dust-modeling-based results at kiloparsec scales. This suggests that low α CO on kiloparsec scales in the centers of some barred galaxies may be due to the contribution of low-optical-depth CO emission in bar-driven inflows. 
    more » « less
  7. Abstract

    Polycyclic aromatic hydrocarbons (PAHs) play a critical role in the reprocessing of stellar radiation and balancing the heating and cooling processes in the interstellar medium but appear to be destroyed in Hiiregions. However, the mechanisms driving their destruction are still not completely understood. Using PHANGS–JWST and PHANGS–MUSE observations, we investigate how the PAH fraction changes in about 1500 Hiiregions across four nearby star-forming galaxies (NGC 628, NGC 1365, NGC 7496, and IC 5332). We find a strong anticorrelation between the PAH fraction and the ionization parameter (the ratio between the ionizing photon flux and the hydrogen density) of Hiiregions. This relation becomes steeper for more luminous Hiiregions. The metallicity of Hiiregions has only a minor impact on these results in our galaxy sample. We find that the PAH fraction decreases with the Hαequivalent width—a proxy for the age of the Hiiregions—although this trend is much weaker than the one identified using the ionization parameter. Our results are consistent with a scenario where hydrogen-ionizing UV radiation is the dominant source of PAH destruction in star-forming regions.

     
    more » « less
  8. Abstract

    The earliest stages of star formation, when young stars are still deeply embedded in their natal clouds, represent a critical phase in the matter cycle between gas clouds and young stellar regions. Until now, the high-resolution infrared observations required for characterizing this heavily obscured phase (during which massive stars have formed, but optical emission is not detected) could only be obtained for a handful of the most nearby galaxies. One of the main hurdles has been the limited angular resolution of the Spitzer Space Telescope. With the revolutionary capabilities of the James Webb Space Telescope (JWST), it is now possible to investigate the matter cycle during the earliest phases of star formation as a function of the galactic environment. In this Letter, we demonstrate this by measuring the duration of the embedded phase of star formation and the implied time over which molecular clouds remain inert in the galaxy NGC 628 at a distance of 9.8 Mpc, demonstrating that the cosmic volume where this measurement can be made has increased by a factor of >100 compared to Spitzer. We show that young massive stars remain embedded for5.11.4+2.7Myr (2.31.4+2.7Myr of which being heavily obscured), representing ∼20% of the total cloud lifetime. These values are in broad agreement with previous measurements in five nearby (D< 3.5 Mpc) galaxies and constitute a proof of concept for the systematic characterization of the early phase of star formation across the nearby galaxy population with the PHANGS–JWST survey.

     
    more » « less
  9. Abstract

    We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as “star formation laws,” aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the Physics at High Angular Resolution in Nearby Galaxies (PHANGS) survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H2conversion factors. The star formation laws we examine show 0.3–0.4 dex of intrinsic scatter, among which the molecular Kennicutt–Schmidt relation shows a ∼10% larger scatter than the other three. The slope of this relation rangesβ≈ 0.9–1.2, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes (β≈ 0.6–1.0), suggesting that the star formation efficiency per orbital time, the star formation efficiency per free fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10%–15% in the star formation law slopes and 0.15–0.25 dex in their normalization, while the CO-to-H2conversion factors can additionally produce uncertainties of 20%–25% for the slope and 0.10–0.20 dex for the normalization.

     
    more » « less