- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, C S (1)
-
Ardoin, L (1)
-
Aumaître, G. (1)
-
Bekaert, DV (1)
-
Blard, P-H (1)
-
Blard, P.-H. (1)
-
Blard, P‐H (1)
-
Bourlès, D. L. (1)
-
Braucher, R. (1)
-
Christl, M. (1)
-
Condom, T. (1)
-
Ehrmann, W (1)
-
Favier, V. (1)
-
Fripiat, F (1)
-
Goehring, B. (1)
-
Gorin, A. (1)
-
He, Z. (1)
-
Hemming, S R (1)
-
Hillenbrand, C‐D (1)
-
Jomelli, V. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Provenance records from sediments deposited offshore of the West Antarctic Ice Sheet (WAIS) can help identify past major ice retreat, thus constraining ice‐sheet models projecting future sea‐level rise. Interpretations from such records are, however, hampered by the ice obscuring Antarctica's geology. Here, we explore central West Antarctica's subglacial geology using basal debris from within the Byrd ice core, drilled to the bed in 1968. Sand grain microtextures and a high kaolinite content (∼38–42%) reveal the debris consists predominantly of eroded sedimentary detritus, likely deposited initially in a warm, pre‐Oligocene, subaerial environment. Detrital hornblende40Ar/39Ar ages suggest proximal late Cenozoic subglacial volcanism. The debris has a distinct provenance signature, with: common Permian‐Early Jurassic mineral grains; absent early Ross Orogeny grains; a high kaolinite content; and high143Nd/144Nd and low87Sr/86Sr ratios. Detecting this “fingerprint” in Antarctic sedimentary records could imply major WAIS retreat, revealing the WAIS's sensitivity to future warming.more » « less
-
Bekaert, DV; Blard, P-H; Raoult, Y; Pik, R; Kipfer, R; Seltzer, AM; Legrain, E; Marty, B (, Quaternary Science Reviews)
-
Jomelli, V.; Swingedouw, D.; Vuille, M.; Favier, V.; Goehring, B.; Shakun, J.; Braucher, R.; Schimmelpfennig, I.; Menviel, L.; Rabatel, A.; et al (, Nature Communications)Abstract Based on new and published cosmic-ray exposure chronologies, we show that glacier extent in the tropical Andes and the north Atlantic regions (TANAR) varied in-phase on millennial timescales during the Holocene, distinct from other regions. Glaciers experienced an early Holocene maximum extent, followed by a strong mid-Holocene retreat and a re-advance in the late Holocene. We further explore the potential forcing of TANAR glacier variations using transient climate simulations. Since the Atlantic Meridional Overturning Circulation (AMOC) evolution is poorly represented in these transient simulations, we develop a semi-empirical model to estimate the “AMOC-corrected” temperature and precipitation footprint at regional scales. We show that variations in the AMOC strength during the Holocene are consistent with the observed glacier changes. Our findings highlight the need to better constrain past AMOC behavior, as it may be an important driver of TANAR glacier variations during the Holocene, superimposed on other forcing mechanisms.more » « less
An official website of the United States government
