skip to main content

Search for: All records

Creators/Authors contains: "Blasi, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large scale structures, most likely formed due to the interaction of islands in the turbulence. Such particles get accelerated exponentially, provided their pitch angle satisfies some conditions. We discuss at length the characterization of the accelerating structure and the physical processes responsible for rapid acceleration. We also comment on the applicability of the results to realistic astrophysical turbulence.
    Free, publicly-accessible full text available March 20, 2023
  2. Context. The spectrum of cosmic ray protons and electrons released by supernova remnants throughout their evolution is poorly known because of the difficulty in accounting for particle escape and confinement downstream of a shock front, where both adiabatic and radiative losses are present. Since electrons lose energy mainly through synchrotron losses, it is natural to ask whether the spectrum released into the interstellar medium may be different from that of their hadronic counterpart. Independent studies of cosmic ray transport through the Galaxy require that the source spectrum of electrons and protons be very different. Therefore, the above question acquires a phenomenological relevance. Aims. Here we calculate the spectrum of cosmic ray protons released during the evolution of supernovae of different types, accounting for the escape from the upstream region and for adiabatic losses of particles advected downstream of the shock and liberated at later times. The same calculation is carried out for electrons, where in addition to adiabatic losses we take the radiative losses suffered behind the shock into account. These electrons are dominated by synchrotron losses in the magnetic field, which most likely is self-generated by cosmic rays accelerated at the shock. Methods. We use standard temporal evolution relationsmore »for supernova shocks expanding in different types of interstellar media together with an analytic description of particle acceleration and magnetic field amplification to determine the density and spectrum of cosmic ray particles. Their evolution in time is derived by numerically solving the equation describing advection with adiabatic and radiative losses for electrons and protons. The flux from particles continuously escaping the supernova remnants is also accounted for. Results. The magnetic field in the post-shock region is calculated by using an analytic treatment of the magnetic field amplification due to nonresonant and resonant streaming instability and their saturation. The resulting field is compared with the available set of observational results concerning the dependence of the magnetic field strength upon shock velocity. We find that when the field is the result of the growth of the cosmic-ray-driven nonresonant instability alone, the spectrum of electrons and protons released by a supernova remnant are indeed different; however, such a difference becomes appreciable only at energies ≳100−1000 GeV, while observations of the electron spectrum require such a difference to be present at energies as low as ∼10 GeV. An effect at such low energies requires substantial magnetic field amplification in the late stages of supernova remnant evolution (shock velocity ≪1000 km s −1 ); this may not be due to streaming instability but rather hydrodynamical processes. We comment on the feasibility of such conditions and speculate on the possibility that the difference in spectral shape between electrons and protons may reflect either some unknown acceleration effect or additional energy losses in cocoons around the sources.« less
  3. ABSTRACT

    Cosmic rays (CRs) are thought to escape their sources streaming along the local magnetic field lines. We show that this phenomenon generally leads to the excitation of both resonant and non-resonant streaming instabilities. The self-generated magnetic fluctuations induce particle diffusion in extended regions around the source, so that CRs build up a large pressure gradient. By means of two-dimensional (2D) and three-dimensional (3D) hybrid particle-in-cell simulations, we show that such a pressure gradient excavates a cavity around the source and leads to the formation of a cosmic ray dominated bubble, inside which diffusivity is strongly suppressed. Based on the trends extracted from self-consistent simulations, we estimate that, in the absence of severe damping of the self-generated magnetic fields, the bubble should keep expanding until pressure balance with the surrounding medium is reached, corresponding to a radius of ∼10–50 pc. The implications of the formation of these regions of low diffusivity for sources of Galactic CRs are discussed. Special care is devoted to estimating the self-generated diffusion coefficient and the grammage that CRs might accumulate in the bubbles before moving into the interstellar medium. Based on the results of 3D simulations, general considerations on the morphology of the γ-ray and synchrotronmore »emission from these extended regions also are outlined.

    « less