skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blaszczyk, F_d M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the measurement of the final-state products of negative pion and muon nuclear capture at rest on argon by the LArIAT experiment at the Fermilab Test Beam Facility. We measure a population of isolated MeV-scale energy depositions, or blips, in 296 LArIAT events containing tracks from stopping low-momentum pions and muons. The average numbers of visible blips are measured to be 0.74 ± 0.19 and 1.86 ± 0.17 near muon and pion track endpoints, respectively. The 3.6 σ statistically significant difference in blip content between muons and pions provides the first demonstration of a new method of pion-muon discrimination in neutrino liquid argon time projection chamber experiments. LArIAT Monte Carlo simulations predict substantially higher average blip counts for negative muon ( 1.22 ± 0.08 ) and pion ( 2.34 ± 0.09 ) nuclear captures. We attribute this difference to 4’s inaccurate simulation of the nuclear capture process. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026