skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bleckley, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes a machine learning approach for annotating and analyzing data curation work logs at ICPSR, a large social sciences data archive. The systems we studied track curation work and coordinate team decision-making at ICPSR. Archive staff use these systems to organize, prioritize, and document curation work done on datasets, making them promising resources for studying curation work and its impact on data reuse, especially in combination with data usage analytics. A key challenge, however, is classifying similar activities so that they can be measured and associated with impact metrics. This paper contributes: 1) a set of data curation activities; 2) a computational model for identifying curation actions in work log descriptions; and 3) an analysis of frequent data curation activities at ICPSR over time. We first propose a set of data curation actions to help us analyze the impact of curation work. We then use this set to annotate a set of data curation logs, which contain records of data transformations and project management decisions completed by archive staff. Finally, we train a text classifier to detect the frequency of curation actions in a large set of work logs. Our approach supports the analysis of curation work documented in work log systems as an important step toward studying the relationship between research data curation and data reuse. 
    more » « less