skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bleem, L. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P cav / L cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution Log -  ( α + β z , σ 2 ) and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P cav / L cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts. 
    more » « less
  2. Free, publicly-accessible full text available September 1, 2025
  3. null (Ed.)
    Weak lensing measurements suffer from well-known shear estimation biases, which can be partially corrected for with the use of image simulations. In this work we present an analysis of simulated images that mimic Hubble Space Telescope/Advance Camera for Surveys observations of high-redshift galaxy clusters, including cluster specific issues such as non-weak shear and increased blending. Our synthetic galaxies have been generated to have similar observed properties as the background-selected source samples studied in the real images. First, we used simulations with galaxies placed on a grid to determine a revised signal-to-noise-dependent ( S / N KSB ) correction for multiplicative shear measurement bias, and to quantify the sensitivity of our KSB+ bias calibration to mismatches of galaxy or PSF properties between the real data and the simulations. Next, we studied the impact of increased blending and light contamination from cluster and foreground galaxies, finding it to be negligible for high-redshift ( z  >  0.7) clusters, whereas shear measurements can be affected at the ∼1% level for lower redshift clusters given their brighter member galaxies. Finally, we studied the impact of fainter neighbours and selection bias using a set of simulated images that mimic the positions and magnitudes of galaxies in Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) data, thereby including realistic clustering. While the initial SExtractor object detection causes a multiplicative shear selection bias of −0.028 ± 0.002, this is reduced to −0.016 ± 0.002 by further cuts applied in our pipeline. Given the limited depth of the CANDELS data, we compared our CANDELS-based estimate for the impact of faint neighbours on the multiplicative shear measurement bias to a grid-based analysis, to which we added clustered galaxies to even fainter magnitudes based on Hubble Ultra Deep Field data, yielding a refined estimate of ∼ − 0.013. Our sensitivity analysis suggests that our pipeline is calibrated to an accuracy of ∼0.015 once all corrections are applied, which is fully sufficient for current and near-future weak lensing studies of high-redshift clusters. As an application, we used it for a refined analysis of three highly relaxed clusters from the South Pole Telescope Sunyaev-Zeldovich survey, where we now included measurements down to the cluster core ( r  >  200 kpc) as enabled by our work. Compared to previously employed scales ( r  >  500 kpc), this tightens the cluster mass constraints by a factor 1.38 on average. 
    more » « less
  4. ABSTRACT Expanding from previous work, we present weak-lensing (WL) measurements for a total sample of 30 distant (zmedian = 0.93) massive galaxy clusters from the South Pole Telescope Sunyaev–Zel’dovich (SPT-SZ) Survey, measuring galaxy shapes in Hubble Space Telescope (HST) Advanced Camera for Surveys images. We remove cluster members and preferentially select z ≳ 1.4 background galaxies via V − I colour, employing deep photometry from VLT/FORS2 and Gemini-South/GMOS. We apply revised calibrations for the WL shape measurements and the source redshift distribution to estimate the cluster masses. In combination with earlier Magellan/Megacam results for lower-redshifts clusters, we infer refined constraints on the scaling relation between the SZ detection significance and the cluster mass, in particular regarding its redshift evolution. The mass scale inferred from the WL data is lower by a factor $0.76^{+0.10}_{-0.14}$ (at our pivot redshift z = 0.6) compared to what would be needed to reconcile a flat Planck νΛCDM cosmology (in which the sum of the neutrino masses is a free parameter) with the observed SPT-SZ cluster counts. In order to sensitively test the level of (dis-)agreement between SPT clusters and Planck, further expanded WL follow-up samples are needed. 
    more » « less
  5. Free, publicly-accessible full text available February 9, 2025
  6. Abstract We provide the first combined cosmological analysis of the South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the ν Λ CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find α SZ = 1.49 − 0.10 + 0.07 and 1 − b SZ = 0.69 − 0.14 + 0.07 , respectively. The results for the mass slope show a ∼4 σ departure from the self-similar evolution, α SZ ∼ 1.8. This shift is mainly driven by the matter density value preferred by SPT data, Ω m = 0.30 ± 0.03, lower than the one obtained by Planck data alone, Ω m = 0.37 − 0.06 + 0.02 . The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, (1 − b ) ∼ 0.8, and with results required by the Planck cosmic microwave background cosmology, (1 − b ) ∼ 0.6. From this analysis, we obtain a new catalog of Planck cluster masses M 500 . We estimate the ratio between the published Planck M SZ masses and our derived masses M 500 , as a “measured mass bias,” 1 − b M . We analyze the mass, redshift, and detection noise dependence of 1 − b M , finding an increasing trend toward high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass, high-mass, low- z , and high- z regimes. 
    more » « less