skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Blostein, Steven D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Residual self-interference cancellation is an important practical requirement for realizing the full potential of full-duplex (FD) communication. Traditionally, the residual self-interference is cancelled via digital processing at the baseband, which requires accurate knowledge of channel estimates of the desired and self-interference channels. In this work, we consider point-to-point FD communication and propose a superimposed signaling technique to cancel the residual self-interference and detect the data without estimating the unknown channels. We show that when the channel estimates are not available, data detection in FD communication results in ambiguity if the modulation constellation is symmetric around the origin. We demonstrate that this ambiguity can be resolved by superimposed signalling, i.e., by shifting the modulation constellation away from the origin, to create an asymmetric modulation constellation. We compare the performance of the proposed detection method to that of the conventional channel estimation-based detection method, where the unknown channels are first estimated and then the data signal is detected. Simulations show that for the same average energy over a transmission block, the bit error rate performance of the proposed detection method is better than that of the conventional method. The proposed method does not require any channel estimates and is bandwidth efficient. 
    more » « less