Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate traffic speed prediction is critical to many applications, from routing and urban planning to infrastructure management. With sufficient training data where all spatio-temporal patterns are well- represented, machine learning models such as Spatial-Temporal Graph Convolutional Networks (STGCN), can make reasonably accurate predictions. However, existing methods fail when the training data distribution (e.g., traffic patterns on regular days) is different from test distribution (e.g., traffic patterns on special days). We address this challenge by proposing a traffic-law-informed network called Reaction-Diffusion Graph Ordinary Differential Equation (RDGODE) network, which incorporates a physical model of traffic speed evolution based on a reliable and interpretable reaction- diffusion equation that allows the RDGODE to adapt to unseen traffic patterns. We show that with mismatched training data, RDGODE is more robust than the state-of-the-art machine learning methods in the following cases. (1) When the test dataset exhibits spatio-temporal patterns not represented in the training dataset, the performance of RDGODE is more consistent and reliable. (2) When the test dataset has missing data, RDGODE can maintain its accuracy by intrinsically imputing the missing values.more » « less
-
null (Ed.)Abstract Learning the topology of a graph from available data is of great interest in many emerging applications. Some examples are social networks, internet of things networks (intelligent IoT and industrial IoT), biological connection networks, sensor networks and traffic network patterns. In this paper, a graph topology inference approach is proposed to learn the underlying graph structure from a given set of noisy multi-variate observations, which are modeled as graph signals generated from a Gaussian Markov Random Field (GMRF) process. A factor analysis model is applied to represent the graph signals in a latent space where the basis is related to the underlying graph structure. An optimal graph filter is also developed to recover the graph signals from noisy observations. In the final step, an optimization problem is proposed to learn the underlying graph topology from the recovered signals. Moreover, a fast algorithm employing the proximal point method has been proposed to solve the problem efficiently. Experimental results employing both synthetic and real data show the effectiveness of the proposed method in recovering the signals and inferring the underlying graph.more » « less
-
null (Ed.)A quickest change detection problem is considered in a sensor network with observations whose statistical dependency structure across the sensors before and after the change is described by a decomposable graphical model (DGM). Distributed computation methods for this problem are proposed that are capable of producing the optimum centralized test statistic. The DGM leads to the proper way to collect nodes into local groups equivalent to cliques in the graph, such that a clique statistic which summarizes all the clique sensor data can be computed within each clique. The clique statistics are transmitted to a decision maker to produce the optimum centralized test statistic. In order to further improve communication efficiency, an ordered transmission approach is proposed where transmissions of the clique statistics to the fusion center are ordered and then adaptively halted when sufficient information is accumulated. This procedure is always guaranteed to provide the optimal change detection performance, despite not transmitting all the statistics from all the cliques. A lower bound on the average number of transmissions saved by ordered transmissions is provided and for the case where the change seldom occurs the lower bound approaches approximately half the number of cliques provided a well behaved distance measure between the distributions of the sensor observations before and after the change is sufficiently large. We also extend the approach to the case when the graph structure is different under each hypothesis. Numerical results show significant savings using the ordered transmission approach and validate the theoretical findings.more » « less
-
null (Ed.)Quickest change detection in a sensor network is considered where each sensor observes a sequence of random variables and transmits its local information on the observations to a fusion center. At an unknown point in time, the distribution of the observations at all sensors changes. The objective is to detect the change in distribution as soon as possible, subject to a false alarm constraint. We consider minimax formulations for this problem and propose a new approach where transmissions are ordered and halted when sufficient information is accumulated at the fusion center. We show that the proposed approach can achieve the optimal performance equivalent to the centralized cumulative sum (CUSUM) algorithm while requiring fewer sensor transmissions. Numerical results for a shift in mean of independent and identically distributed Gaussian observations show significant communication savings for the case where the change seldom occurs which is frequently true in many important applications.more » « less
-
null (Ed.)The topic of training machine learning models by employing multiple gradient-computing workers is attracting great interest recently. Communication efficiency in such distributed learning settings is an important consideration, especially for the case where the needed communications are expensive in terms of power usage. We develop a new approach which is efficient in terms of communication transmissions. In this scheme, only the most informative worker results are transmitted to reduce the total number of transmissions. Our ordered gradient approach provably achieves the same order of convergence rate as gradient descent for nonconvex smooth loss functions while gradient descent always requires more communications. Experiments show significant communication savings compared to the best existing approaches in some cases.more » « less