skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boßmann, Lea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N $$d$$ d -dimensional bosons for large N . The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form $$(N-1)^{-1}N^{d\beta }v(N^\beta \cdot )$$ ( N - 1 ) - 1 N d β v ( N β · ) for $$\beta \in [0,\frac{1}{4d})$$ β ∈ [ 0 , 1 4 d ) . We derive a sequence of N -body functions which approximate the true many-body dynamics in $$L^2({\mathbb {R}}^{dN})$$ L 2 ( R dN ) -norm to arbitrary precision in powers of $$N^{-1}$$ N - 1 . The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution. 
    more » « less