Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of “interior tailorability,” thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm−2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this “bottom-up” synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 16, 2025
-
Abstract Nanoparticle reinforcement is a general approach toward the strengthening of elastomer nanocomposite in large‐scale applications. Extensive studies and efforts have been contributed to demonstrating the property reinforcement of polymer nanocomposites in relation to matrix‐filler and filler‐filler interaction. Here, a facile synthetic method is creatively reported to synthesize SiO2,15/120‐
g ‐polyisoprene (SiO2‐g ‐PI) particle brushes using atom transfer radical polymerization (ATRP). The dispersion and microstructures of the nanoparticles in the nanocomposites are investigated by morphological characterizations, whereas the reinforcing mechanism is studied through mechanical measurements as well as computational simulation. Remarkably, compared with the cured bulk elastomers and matrix(M)/SiO2blends, M/particle brushes (PB) exhibit significant improvement in mechanical properties, including tensile strength, elongation at break, modules, and rolling resistance. This elastomer nanocomposites afford a novel prospect for the practical application of next‐generation automobile tires with enhanced performance.Free, publicly-accessible full text available June 1, 2025