skip to main content

Search for: All records

Creators/Authors contains: "Boger, Walter L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Freshwater salinization syndrome (FSS) refers to the suite of interactive effects of salt ions on degradation of physical, biological,and social systems. Best management practices (BMPs), which are methods to effectively reduce runoff and nonpoint source pollution (stormwater, nutrients, sediments), do not typically consider management of salt pollution. We investigate impacts of FSS on mobilization of salts, nutrients, and metals in urban streams and storm water BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic USA and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show 1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g.,similar to the way concentrations increase during other soil disturbance activities); 2) sharp declines in pH (acidification) in response to road salt applications because of mobilization of H+ from soil exchange sites by Na+; 3) sharp increases inorganic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications, likely because of lysing cells and changes insolubility; 4) substantial retention (~30–40%) of Na+more »in stormwater BMP sediments and floodplains in response to salinization; 5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients(N, P), and trace metals(Cu, Sr) from stormwater BMPs and restored streams in response to FSS; 6) downstream increasing loads ofCl–, SO42–, Br–, F–,andI–along flowpaths through urbanstreams and P release from urban stormwater BMPs in response to salinization; and 7)a substantial annual reduction (>50%) in Na+concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compare our original results with published metrics of contaminant retention and release across a broad range of stormwater BMPs from North America and Europe.Overall, urban streams and stormwater BMPs consistently retain Na+ and Cl–but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater BMPs. Reducing diverse chemical cocktails of contaminants mobilized by freshwater salinization is a priority for effectively and holistically restoring urban waters.« less
    Free, publicly-accessible full text available June 27, 2023
  2. Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.
    Free, publicly-accessible full text available March 16, 2023
  3. null (Ed.)
    Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, andmore »(4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions ( e.g. monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services.« less