skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bohannan, Brendan_J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants and mycorrhizal fungi form mutualistic relationships that affect how resources flow between organisms and within ecosystems. Common mycorrhizal networks (CMNs) could facilitate preferential transfer of carbon and limiting nutrients, but this remains difficult to predict. Do CMNs favour fungal resource acquisition at the expense of plant resource demands (a fungi‐centric view), or are they passive channels through which plants regulate resource fluxes (a plant‐centric view)?We used stable isotope tracers (13CO2and15NH3), plant traits, and mycorrhizal DNA to quantify above‐ and below‐ground carbon and nitrogen transfer between 18 plant species along a 520‐km latitudinal gradient in the Pacific Northwest, USA.Plant functional type and tissue stoichiometry were the most important predictors of interspecific resource transfer. Of ‘donor’ plants, 98% were13C‐enriched, but we detected transfer in only 2% of ‘receiver’ plants. However, all donors were15N‐enriched and we detected transfer in 81% of receivers. Nitrogen was preferentially transferred to annuals (0.26 ± 0.50 mg N per g leaf mass) compared with perennials (0.13 ± 0.30 mg N per g leaf mass). This corresponded with tissue stoichiometry differences.SynthesisOur findings suggest that plants and fungi that are located closer together in space and with stronger demand for resources over time are more likely to receive larger amounts of those limiting resources. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry. 
    more » « less