skip to main content

Search for: All records

Creators/Authors contains: "Bolli, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Cosmic dawn, the onset of star formation in the early universe, can in principle be studied via the 21-cm transition of neutral hydrogen, for which a sky-averaged absorption signal, redshifted to MHz frequencies, is predicted to be O(10–100) mK. Detection requires separation of the 21-cm signal from bright chromatic foreground emission due to Galactic structure, and the characterization of how it couples to instrumental response. In this work, we present characterization of antenna gain patterns for the Large-aperture Experiment to detect the Dark Ages (LEDA) via simulations, assessing the effects of the antenna ground-plane geometries used, and measured soil properties. We then investigate the impact of beam pattern uncertainties on the reconstruction of a Gaussian absorption feature. Assuming the pattern is known and correcting for the chromaticity of the instrument, the foregrounds can be modelled with a log-polynomial, and the 21-cm signal identified with high accuracy. However, uncertainties on the soil properties lead to percentage changes in the chromaticity that can bias the signal recovery. The bias can be up to a factor of two in amplitude and up to few  per cent in the frequency location. These effects do not appear to be mitigated by larger ground planes, conversely gainmore »patterns with larger ground planes exhibit more complex frequency structure, significantly compromising the parameter reconstruction. Our results, consistent with findings from other antenna design studies, emphasize the importance of chromatic response and suggest caution in assuming log-polynomial foreground models in global signal experiments.

    « less