skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bonalli, Riccardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sequential Convex Programming (SCP) has recently gained significant popularity as an effective method for solving optimal control problems and has been successfully applied in several different domains. However, the theoretical analysis of SCP has received comparatively limited attention, and it is often restricted to discrete-time formulations. In this paper, we present a unifying theoretical analysis of a fairly general class of SCP procedures for continuous-time optimal control problems. In addition to the derivation of convergence guarantees in a continuous-time setting, our analysis reveals two new numerical and practical insights. First, we show how one can more easily account for manifold-type constraints, which are a defining feature of optimal control of mechanical systems. Second, we show how our theoretical analysis can be leveraged to accelerate SCP-based optimal control methods by infusing techniques from indirect optimal control. 
    more » « less
  2. This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming. 
    more » « less