- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Andrews, Jennifer_E (1)
-
Bonanos, Alceste_Z (1)
-
Bostroem, K_Azalee (1)
-
Dong_董, Yize_一泽 (1)
-
Farah, Joseph (1)
-
Haislip, Joshua (1)
-
Hiramatsu, Daichi (1)
-
Hoang, Emily (1)
-
Hosseinzadeh, Griffin (1)
-
Howell, D_Andrew (1)
-
Itagaki_板, Koichi_垣公一 (1)
-
Janzen, Daryl (1)
-
Jencson, Jacob_E (1)
-
Jha, Saurabh_W (1)
-
Kouprianov, Vladimir (1)
-
Lundquist, Michael (1)
-
McCully, Curtis (1)
-
Mehta, Darshana (1)
-
Meza_Retamal, Nicolas_E (1)
-
Newsome, Megan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (D≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M⊙), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M⊙) at ∼3000R⊙ejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13.more » « less
An official website of the United States government
