skip to main content


Search for: All records

Creators/Authors contains: "Bonner, Hannah M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset contains meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains during water years 2019-2021. Data collection had an emphasis on paired open-forest sites and included three forested elevations. In total, we present 270 snow pit observations, 4,019 snow depth measurements, and three years of meteorological forcing from two weather stations (one in a meadow, the other in an adjacent forest). The dataset is described in a forthcoming publication of the same name: A meteorology and snow dataset from adjacent forested and meadow sites at Crested Butte, CO, USA (Bonner et al., 2022).

    All snow observation and meteorological forcing data are available as both .nc and .mat files.
    Additionally, original digitized copies of snow pit observations are provided as .gsheet/.xlxs files.

    This dataset will continue to be updated, via this repository, as additional years of data are collected.

     
    more » « less
  2. Abstract

    We present meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains (USA) over three consecutive water years with different amounts of snow water equivalent (SWE) accumulation: A year with above average SWE (2019), a year with average SWE (2020), and a year with below average SWE (2021). This data set is distinguished by its emphasis on paired open‐forest sites in a continental snow climate. Approximately once a month during February–May, we collected data from 15 to 20 snow pits and took 8 to 19 snow depth transects. Our sampling sites were in open and adjacent forested areas at 3,100 m and in a lower elevation aspen (3,035 m) and higher elevation conifer stand (3,395 m). In total, we recorded 270 individual snow pit density and temperature profiles and over 4,000 snow depth measurements. These data are complimented by continuous meteorological measurements from two weather stations: One in the open and one in the adjacent forest. Meteorology data—including incoming shortwave and longwave radiation, outgoing shortwave radiation, relative humidity, wind speed, snow depth, and air and infrared surface temperature—were quality controlled and the forcing data were gap‐filled. These data are available to download from Bonner, Smyth, et al. (2022) athttps://doi.org/10.5281/zenodo.6618553, at three levels of processing, including a level with downscaled, adjusted precipitation based on data assimilation using observed snow depth and a process‐based snow model. We demonstrate the utility of these data with a modeling experiment that explores open‐forest differences and identifies opportunities for improvements in model representation.

     
    more » « less
  3. Abstract

    Understanding how the presence of a forest canopy influences the underlying snowpack is critical to making accurate model predictions of bulk snow density and snow water equivalent (SWE). To investigate the relative importance of forest processes on snow density and SWE, we applied the SUMMA model at three sites representing diverse snow climates in Colorado (USA), Oregon (USA), and Alberta (Canada) for 5 years. First, control simulations were run for open and forest sites. Comparisons to observations showed the uncalibrated model with NLDAS‐2 forcing performed reasonably. Then, experiments were completed to isolate how forest processes affected modelled snowpack density and SWE, including: (1) mass reduction due to interception loss, (2) changes in the phase and amount of water delivered from the canopy to the underlying snow, (3) varying new snow density from reduced wind speed, and (4) modification of incoming longwave and shortwave radiation. Delivery effects (2) increased forest snowpack density relative to open areas, often more than 30%. Mass effects (1) and wind effects (3) decreased forest snowpack density, but generally by less than 6%. The radiation experiment (4) yielded negligible to positive effects (i.e., 0%–10%) on snowpack density. Delivery effects on density were greatest at the warmest times in the season and at the warmest site (Oregon): higher temperatures increased interception and melted intercepted snow, which then dripped to the underlying snowpack. In contrast, mass effects and radiation effects were shown to have the greatest impact on forest‐to‐open SWE differences, yielding differences greater than 30%. The study highlights the importance of delivery effects in models and the need for new types of observations to characterize how canopies influence the flux of water to the snow surface.

     
    more » « less