skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Boote, Brett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The photoluminescence (PL) saturation of CdSe/ZnS core/shell inorganic semiconductor quantum dots (QDs) and its utility as a probe for saturated excitation (SAX) microscopy are reported. Under saturating excitation power densities, the PL signal was demodulated and recorded at harmonics of the fundamental frequency. For commercially available Qdot® 655 ITK™ QDs, the power density required to achieve saturation was dependent upon the local environment of the QDs. For QDs deposited and dried on a glass substrate, the excitation power density required for PL saturation was less than 1 kW/cm2. Compared to this, saturation of PL for QDs dispersed in water required an excitation power density greater than 200 kW/cm2. This observation is manifested as a limitation in the imaging of hydrated samples, as demonstrated for HeLa cells labelled with biotinylated‐phalloidin followed by labelling with streptavidin‐coated QDs. As saturation affects the obtained spatial resolution in several imaging formats, including confocal imaging, the provided data will aid in obtaining the optimal spatial resolution when using QD probes to image biological samples.

     
    more » « less