Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Wildfires, which are increasing in frequency and severity with climate change, reduce soil microbial biomass and alter microbial community composition and function. The soil microbiome plays a vital role in carbon (C) and nitrogen (N) cycling, but its complexity makes it challenging to predict post-wildfire soil microbial dynamics and resulting impacts on ecosystem biogeochemistry. The application of biogeochemically relevant conceptual trait-based frameworks to the soil microbiome can distill this complexity, enabling enhanced predictability of soil microbiome recovery following wildfire and subsequent impacts to biogeochemical cycles. Conceptual frameworks that have direct links to soil C and N cycling have been developed for the soil microbiome; the Y-A-S framework overviews soil microbiome life history strategies that have tradeoffs with one another and others have proposed frameworks specific to wildfire. Here, we aimed to delineate post-wildfire changes of bacterial traits in western US coniferous forests to inform how severe wildfire influences soil microbiome recovery and resultant biogeochemical cycling. We utilized a comprehensive metagenome-assembled genome catalog from post-wildfire soils representing 1 to 11 years following low- and high-severity burning to identify traits that enable the persistence of microbial taxa in burned soils and influence ecosystem C and N cycling. We found that high-severity wildfire initially selects for fast growers and, up to a decade post-fire, taxa that invest in genes for acquiring diverse resources from the external environment, which in combination could increase soil C losses. This work begins to disentangle how climate change–induced shifts in wildfire behavior might alter microbially mediated soil biogeochemical cycling.more » « less
-
Abstract Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning—the combustion of logging residue on the forest floor—is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.more » « less
-
Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment.more » « less