Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus–host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.more » « less
-
Abstract We investigate the spatial distribution, spectral properties and temporal variability of primary producers (e.g. communities of microbial mats and mosses) throughout the Fryxell basin of Taylor Valley, Antarctica, using high-resolution multispectral remote-sensing data. Our results suggest that photosynthetic communities can be readily detected throughout the Fryxell basin based on their unique near-infrared spectral signatures. Observed intra- and inter-annual variability in spectral signatures are consistent with short-term variations in mat distribution, hydration and photosynthetic activity. Spectral unmixing is also implemented in order to estimate mat abundance, with the most densely vegetated regions observed from orbit correlating spatially with some of the most productive regions of the Fryxell basin. Our work establishes remote sensing as a valuable tool in the study of these ecological communities in the McMurdo Dry Valleys and demonstrates how future scientific investigations and the management of specially protected areas could benefit from these tools and techniques.more » « less
An official website of the United States government
