skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Borish, Victoria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As quantum technologies transition from the research laboratory into commercial development, the opportunities for students to begin their careers in this new quantum industry are increasing. With these new career pathways, more and more people are considering the best ways to educate students about quantum concepts and relevant skills. In particular, the quantum industry is looking for new employees with experimental skills, but the instructional labs, capstone projects, research experiences, and internships that provide experiences where students can learn these skills are often resource intensive and not available at all institutions. The quantum company, Infleqtion, recently made its online quantum matter machine, Oqtant, publicly available, so people around the world could send commands to create and manipulate Bose-Einstein condensates and receive back real experimental data. Making a complex quantum experiment accessible to anyone has the potential to extend the opportunity to work with quantum experiments to students at less-resourced institutions. As a first step in understanding the potential benefits of using such a platform in educational settings, we collected data from instructors and students who were interested in using, or had used, Oqtant. In this study, we investigate instructors’ views about reasons they would like to use Oqtant and the challenges they would face in doing so. We also provide a concrete example of how Oqtant was used in an upper-division undergraduate quantum mechanics course and the instructor’s perception of its benefits. We complement this with the student perspective, discussing student experiences interacting with Oqtant in their course or through think-aloud interviews outside of a course. This allows us to investigate the reasons students perceive Oqtant to be a real experiment even though they never physically interact with it, how Oqtant compares to their other experimental experiences, and what they enjoy about working with it. These results will help the community consider the potential value of creating more opportunities for students to access remote quantum experiments. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. As quantum technologies transition out of the research lab and into commercial applications, it becomes important to better prepare students to enter this new and evolving workforce. To work toward this goal of preparing physics students for a career in the quantum industry, a senior capstone course called “Quantum Forge” was created at the University of Colorado Boulder. This course aims to provide students with a hands-on quantum experience and prepare them to enter the quantum workforce directly after their undergraduate studies. Some of the course’s goals are to have students understand what comprises the quantum industry and have them feel confident they could enter the industry if desired. To understand to what extent these goals are achieved, we followed the first cohort of Quantum Forge students through their year in the course in order to understand their perceptions of the quantum industry, including what it is, whether they feel that they could be successful in it, and whether or not they want to participate in it. The results of this work can assist educators in optimizing the design of future quantum-industry-focused courses and programs to better prepare students to be a part of this burgeoning industry. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available December 1, 2026
  4. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] Instruction in quantum mechanics is becoming increasingly important as the field is not only a key part of modern physics research but is also important for emerging technologies. However, many students regard quantum mechanics as a particularly challenging subject, in part because it is considered very mathematical and abstract. One potential way to help students understand and contextualize unintuitive quantum ideas is to provide them opportunities to work with physical apparatus demonstrating these phenomena. In order to understand how working with quantum experiments affects students’ reasoning, we performed think-aloud lab sessions with two pairs of students as they worked through a sequence of quantum optics experiments that demonstrated particle-wave duality of photons. Analyzing the in-the-moment student thinking allowed us to identify the resources students activated while reasoning through the experimental evidence of single-photon interference, as well as student ideas about what parts of the experiments were quantum versus classical. This work will aid instructors in helping their students construct an understanding of these topics from their own ideas and motivate future investigations into the use of hands-on opportunities to facilitate student learning about quantum mechanics. Published by the American Physical Society2024 
    more » « less
  5. Photovoice is a type of participatory action research in which individuals document their experiences through photography. Through the taking, captioning, and reflecting on photographs that they have taken, participants are able to affect change within their communities. Participants also take part in an interview or focus group about their photos at the end of the photovoice process in which they determine themes that appear in their photos, allowing them to participate in the research being done. We used the photovoice methodology in a small, project-based, upper-division, physics capstone course at the University of Colorado Boulder, in which students worked on an authentic industry project in partnership with a company in the quantum industry. As an example of the types of research results and benefits one could obtain using photovoice, we present a discussion of how we implemented the photovoice process within this course and present some of our results, including students’ experiences with the photovoice process. Photovoice may be particularly useful in understanding new, unique courses, as it allows students to co-create research that highlights ideas about the course that researchers would not know to ask about in more traditional research methodologies such as reflection questions. Published by the American Physical Society2024 
    more » « less