skip to main content

Search for: All records

Creators/Authors contains: "Bose, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from −21 to 392 d relative to peak ultraviolet (UV)/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 16 d the rise was consistent with a flux ∝t2 power law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at amore »bolometric luminosity of L = (6.2 ± 0.2) × 1044 erg s−1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 d after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well fitted by a blackbody with an effective radius of ∼1 × 1012 cm and a temperature of ∼6 × 105 K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 yr earlier with a smooth decline and a luminosity of LV ≥ 1.4 × 1043 erg s−1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å.« less
  2. ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100more »and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙.« less
  3. ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton showmore »a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).« less
  4. Aims . We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods . Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared tomore »other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results . SN 2016hnk is consistent with being a subluminous ( M B  = −16.7 mag, s B V =0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca  II ] λ λ 7291,7324 doublet with a Doppler shift of 700 km s −1 . Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ( M Ch ) carbon-oxygen white dwarf that produced 0.108 M ⊙ of 56 Ni. Our modeling suggests that the narrow [Ca  II ] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M Ch limit.« less
  5. Free, publicly-accessible full text available July 1, 2022
  6. Free, publicly-accessible full text available July 1, 2022
  7. Free, publicly-accessible full text available July 1, 2022
  8. Free, publicly-accessible full text available June 29, 2022
  9. Free, publicly-accessible full text available June 1, 2022