skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bossaller, Daniel P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Codes over rings, especially over Galois rings, have been extensively studied for nearly three decades due to their similarity to linear codes over finite fields. A distributed storage system uses a linear code to encode a large file across several nodes. If one of the nodes fails, a linear exact repair scheme efficiently recovers the failed node by accessing and downloading data from the rest of the servers of the storage system. In this paper, we develop a linear repair scheme for free maximum distance separable codes, which coincide with free maximum distance with respect to the rank codes over Galois rings. In particular, we give a linear repair scheme for full-length Reed–Solomon codes over a Galois ring. 
    more » « less
    Free, publicly-accessible full text available July 12, 2026